N,N’-双(3-氨丙基)甲胺为单体制备荷正电复合纳滤膜及其脱盐性能
作者:叶谦1,李俊俊2,韩子龙1,陈涛2,高从堦1,潘巧明2
单位: 1,国家海洋局第二海洋研究所,浙江杭州 310012;2,杭州水处理技术研究开发中心,浙江杭州 310012
关键词: 纳滤;荷正电膜;N,N’-双(3-氨丙基)甲胺;二乙烯三胺
出版年,卷(期):页码: 2016,36(5):53-59

摘要:
 以N,N′-双(3-胺丙基)甲胺为水相单体,均苯三甲酰氯为油相单体,采用界面聚合的方法制备荷正电复合纳滤膜。通过在水相里添加二乙烯三胺,调节并最终优化该纳滤膜对硫酸镁的截留率。该复合纳滤膜对不同盐溶液的截留率顺序为MgCl2 > MgSO4 > NaCl > Na2SO4,其中MgCl2的截留率可保持在98%左右,MgSO4的截留率可以通过二乙烯三胺调节从75%上升至98%;一价阳离子盐(Na2SO4与NaCl)的截留率较低。通过扫描电子显微镜、衰减全反射红外光谱仪和X射线光电子能谱对代表性的纳滤膜的结构进行了表征。利用Zeta电位仪表征其表面荷电性质,用接触角测量仪测定膜表面的亲水性。
 A positively charged composite nanofiltration membrane was prepared via interfacial polymerization with N, N'- bis (3-aminopropyl) methylamine as an aqueous phase monomer and trimesoyl chloride as an oil phase monomer. To adjust and finally optimize rejection rate of magnesium sulfate of the nanofiltration membrane, diethylenetriamine was added into the aqueous phase.The rejection rates of different inorganic salt by the composite nanofiltration membrane were MgCl2> MgSO4> NaCl> Na2SO4, and the retention rate of MgCl2 could be maintained at about 98%. The rejection rate of MgSO4 rose from 75% to 98% by adjusting the dosage of diethylenetriamine. The rejection rates of monovalent cation salt such as Na2SO4 and NaCl were small. The structures of some representative nanofiltration membranes were characterized by scanning electron microscopy, attenuated total reflection infrared spectroscopy and X-ray photoelectron spectroscopy. Zeta potential was used to characterize the surface charge, meanwhile, hydrophilic property of membrane surface was measured by using a contact angle measuring instrument.
第一作者简介(1991-),男,籍贯,主要从事膜材料研究,邮箱:zjyeqian@163.com,电话:18968405295。 通讯作者信息:电子邮箱:panqm@chinawatertech.com。

参考文献:
 [1].王晓琳, 涂丛慧, 方彦彦, 等. 纳滤膜孔结构, 荷电性质, 分离机理及动电性质研究进展[J]. 膜科学与技术, 2011, 31(3): 127-134.
[2].Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254.
[3].Peeters J M M, Boom J P, Mulder M H V, et al. Retention measurements of nanofiltration membranes with electrolyte solutions[J]. Journal of Membrane Science, 1998, 145(2): 199-209.
[4].Schaep J, Van der Bruggen B, Vandecasteele C, et al. Influence of ion size and charge in nanofiltration[J]. Separation and Purification Technology, 1998, 14(1): 155-162.
[5].Cheng S, Oatley D L, Williams P M, et al. Positively charged nanofiltration membranes: review of current fabrication methods and introduction of a novel approach[J]. Advances in colloid and interface science, 2011, 164(1): 12-20.
[6]Du R, Zhao J. Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane[J]. Journal of Membrane Science, 2004, 239(2):págs. 183-188.
[7]Xu T, Yang W. A novel positively charged composite membranes for nanofiltration prepared from poly(2,6-dimethyl-1,4-phenylene oxide) by in situ amines crosslinking[J]. Journal of Membrane Science, 2003, 215(1):25–32.
[8]Huang R, Chen G, Sun M, et al. Preparation and characterization of quaterinized chitosan/poly(acrylonitrile) composite nanofiltration membrane from anhydride mixture cross-linking[J]. Separation & Purification Technology, 2008, 58(3):393–399.
[9]Huang R, Chen G, Sun M, et al. Preparation and characterization of composite NF membrane from a graft copolymer of trimethylallyl ammonium chloride onto chitosan by toluene diisocyanate cross-linking[J]. Desalination, 2009, 239(1):38–45.
[10]Zhong P S, Widjojo N, Chung T S, et al. Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater[J]. Journal of Membrane Science, 2012, s 417–418(2):52–60.
[11]Ji Y, An Q, Qiang Z, et al. Preparation of novel positively charged copolymer membranes for nanofiltration[J]. Fuel & Energy Abstracts, 2011, 376(1):254-265.
[12]Li X, Zhang C, Zhang S, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369:26–36.
[13]Zhang Q, Wang H, Zhang S, et al. Positively charged nanofiltration membrane based on cardo poly(arylene ether sulfone) with pendant tertiary amine groups[J]. Journal of Membrane Science, 2011, 375(1):191–197.
[14]Wang T, Yang Y, Zheng J, et al. A novel highly permeable positively charged nanofiltration membrane based on a nanoporous hyper-crosslinked polyamide barrier layer[J]. Journal of Membrane Science, 2013, 448(50):180–189.
[15]Deng H, Xu Y, Chen Q, et al. High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes. J Mem Sci[J]. Journal of Membrane Science, 2011, 366:363-372.
[16].Gorenflo A, Velazquez-Padron D, Frimmel F H. Nanofiltration of a German groundwater of high hardness and NOM content: performance and costs[J]. Desalination, 2003, 151(3): 253-265.
[17].Galanakis C M, Fountoulis G, Gekas V. Nanofiltration of brackish groundwater by using a polypiperazine membrane[J]. Desalination, 2012, 286: 277-284.
[18].Garcia-Aleman J, Dickson J M. Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membranes: membrane charge inversion phenomena[J]. Journal of membrane science, 2004, 239(2): 163-172.
[19]Song Y, Jia X, Yan X, et al. Performance of UF–NF integrated membrane process for seawater softening[J]. Desalination, 2011, 276(1):109-116.
[20]Liu C, Shi L, Wang R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42− in feed water[J]. Journal of Membrane Science, 2015, 486:169–176.
[21]Homayoonfal M, Akbari A, Mehrnia M R. Preparation of polysulfone nanofiltration membranes by UV-assisted grafting polymerization for water softening[J]. Desalination, 2010, 263(1-3):217-225.
[22].夏敏玲, 潘巧明. 1 种荷正电纳滤膜的制备[J]. 化工生产与技术, 2014, 21(3): 16-19.
[23].谢晶曦, 化学, 常俊标, 等. 红外光谱在有机化学和药物化学中的应用[M]. 科学出版社, 2001.
[24].张所波, 张奇峰, 李胜海. 反渗透复合膜最新研究进展[J]. 膜科学与技术, 2013, 33(4):1-6.
[25].Karode S K, Kulkarni S S, Suresh A K, et al. New insights into kinetics and thermodynamics of interfacial polymerization[J]. Chemical Engineering Science, 1998, 53(15):2649–2663.
[26].Morgan P W, Kwolek S L. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces †[J]. Journal of Polymer Science Part A Polymer Chemistry, 1996, 34(4):531–559.
[27].Yadav S K, Khilar K C, Suresh A K. Microencapsulation in polyurea shell: Kinetics and film structure[J]. Aiche Journal, 1996, 42(9):2616-2626.
[28].Yuan F, Wang Z, Yu X, et al. Visualization of the Formation of Interfacially Polymerized Film by an Optical Contact Angle Measuring Device[J]. Journal of Physical Chemistry C, 2012, 116(21):11496-11506.
[29].Wamser C C, Gilbert M I. Detection of surface functional group asymmetry in interfacially-polymerized films by contact angle titrations[J]. Langmuir, 1992, 8(6):1608-1614.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号