有机/无机杂化TiO2纳米粒子掺杂改性复合正渗透膜活性分离层的研究
作者:况武12,康国栋1,刘中楠12,周美青1,刘丹丹1,曹义鸣1,*
单位: 1.中国科学院 大连化学物理研究所,大连116023;2.中国科学院大学,北京100049
关键词: 纳米二氧化钛;正渗透;内浓差极化;表面改性
分类号: TQ028.8
出版年,卷(期):页码: 2016,36(6):25-31

摘要:
 通过自由基聚合在纳米二氧化钛(TiO2)表面接枝聚甲基丙烯酸甲酯(PHEMA),得到有机/无机杂化的TiO2-PHEMA纳米粒子,作为界面聚合制备复合正渗透(FO)膜的有机相添加剂,对活性分离层进行掺杂改性。考察了TiO2-PHEMA粒子含量对分离层结构与性质以及膜性能的影响。结果显示,当TiO2-PHEMA添加量为有机相均苯三甲酰氯溶液的0.1 wt.% (w/w)时,FO膜的表面水接触角下降到47.7°,均方根表面粗糙度增加到99.5 nm,表明TiO2-PHEMA的加入显著提高了分离层的亲水性以及膜表面粗糙度。在AL-FS(分离层面向原料液)和AL-DS(分离层面向驱动液)两种操作模式下,复合膜的水通量分别从6.8 L/(m2h)和12.2 L/(m2h)增加到23.6 L/(m2h)和39.2 L/(m2h),并保持着较高的NaCl截留率(R > 90%)。
The organic-inorganic hybrid titanium dioxide (TiO2) nanoparticles were synthesized by grafting poly (2-hydroxyethyl methacrylate) (PHEMA) to the surface via radical polymerization and used as additive to fabricate the active layer of flat-sheet thin film composite forward osmosis (TFC-FO) membranes by interfacial polymerization. The influence of TiO2-PHEMA loadings on properties and structure of active layer and membrane performance were investigated. The results showed that the addition of TiO2-PHEMA had significant influences on both hydrophilicity and surface roughness. When the content of nanoparticles increased to 0.1 wt%, the water contact angle decreased to 47.7°, while the surface roughness increased to 99.5 nm. The water flux increased from 6.8 L/(m2•h) and 12.2 L/( m2•h) to 23.6 L/( m2•h) and 39.2 L/( m2•h) tested under the AL-FS mode (Active layer against the feed solution) and AL-DS mode (Active layer against the draw solution), respectively. And all the composite membranes have a relative high rejection to NaCl (R>90%).

基金项目:
基金项目:国家自然科学基金( 批准号: 21206157)、国家科技支撑计划项目( 批准号: 2014BAI11B13)和大连科技基金(批准号:2013J21DW030)资助.

作者简介:
第一作者简介:况武(1989.1-), 男,江西高安人, 博士研究生, 中国科学院大连化学物理研究所, 从事膜技术研究. *通讯作者,E-mail: ymcao@ dicp.ac.cn

参考文献:
 [1] 时均,袁权,高从堦. 膜技术手册[M]. 北京:化学工业出版社,2001. 1-2。
[2] Mi B X, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning with chemical reagents [J]. J Membr Sci, 2010, 348: 337-345.
[3] Chung T S, Zhang S, Wang K Y. Forward osmosis processes: yesterday, today and tomorrow [J]. Desalination, 2012, 287: 78-81.
[4] 高从堦,郑根江,汪锰,等. 正渗透—水纯化和脱盐的新途径[J]. 水处理技术,2008, 34(2): 1-8.
[5] Akther N, Sodiq A, Giwa A, et al. Recent advancements in forward osmosis desalination: A review [J]. Chem Eng J, 2015, 281: 502–522.
[6] Zhou Z Z, Lee J Y, Chung T S. Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction [J]. Chem Eng J, 2014, 249: 236–245.
[7] 李丽丽,许春玲,王铎. 正渗透膜用于橙汁浓缩及其污染的研究[J]. 膜科学与技术, 2012, 32(6): 87-91.
[8] Popper K, Camirand W M, Nury F, et al. Dialyzer concentrates beverages [J]. Food Eng, 1966, 38: 102-104.
[9] Achilli A, Cath T Y, Childress A E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation [J]. J Membr Sci, 2009, 343: 42-52.
[10] Chou S R, Wang R, Shi L, et al. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density [J]. J Membr Sci, 2012, 389: 25-33.
[11] Ismail A F, Padaki M, Hilal N, et al. Thin film composite membrane — Recent development and future potential [J]. Desalination, 2015, 356: 140-148.
[12] McCutcheon J R, Elimelech M. Influence of concentrative and dilutive internal oncentration polarization on flux behavior in forward osmosis [J]. J Membr Sci, 2006, 284: 37-247.
[13] 李刚,李雪梅,柳越,等. 正渗透原理及浓差极化现象[J]. 化学进展, 2010, 22(5): 812-821.
[14] Zhao S F, Zou L, Tang C Y, et al. Recent developments in forward osmosis: Opportunities and challenges [J]. J Membr Sci, 2012, 396: 1-21.
[15] Yang Y N, Zhang H X, Wang P, et al. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane [J]. J Membr Sci, 2007, 288(1-2): 231-238.
[16] Yang Y N, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membrane by sol–gel process [J]. Polymer, 2006, 47(8): 2683-2688.
[17] Zhu L J, Zhu L P, Jiang J H, et al. Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly (2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive [J]. J Membr Sci, 2014, 451: 157-168.
[18] Tripathi B P, Dubey N C, Subair R, et al. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles [J]. RCS Adv, 2016, 6: 4448-4457.
[19] 由钰婷,汪阳,张霞. 纳米TiO2共混改性PVDF复合膜的制备和性能[J]. 材料研究学报, 2012, 26(3): 247-254.
[20] 朱志超,朱小燕,雷新荣. 硅烷偶联剂改性高岭土对PVDF膜性能的影响研究[J]. 膜科学与技术, 2015, 35(6): 9-15.
[21] Ngo V G, Bressy C, Leroux C, et al. Synthesis of hybrid TiO2 nanoparticles with well-defined poly (methyl methacrylate) and poly (tert-butyldimethylsilyl methacrylate) via the RAFT process [J]. Polymer, 2009, 50: 3095-3102.
[22]于海军,曹义鸣,康国栋,等. 紫外接枝聚合聚乙二醇甲基丙烯酸甲酯制备抗污染聚砜超滤膜[J]. 高等学校化学学报, 2010, 31:2506-2510.
[23] Yip N Y, Tiraferri A, Phillip W A, et al. High performance thin-film composite forward osmosis membrane [J]. Environ Sci Technol, 2010, 44: 3812–3818.
[24] 杨瑞林,张新欢,董秉直,等. 以天然水为原料的正渗透过程中CTA膜表面污染物脱附研究[J]. 膜科学与技术, 2015, 35(3): 37-43.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号