聚乙二醇添加剂对聚砜正渗透膜性能的影响
作者:刘仁啸,陈刚,王艳强,李雪梅,何涛
单位: 1.中国科学院上海高等研究院,上海 201210; 2.中国科学院大学,北京 100049; 3.华特迪士尼(中国)有限公司,迪士尼中国研究,上海 200031
关键词: 正渗透;聚砜;界面聚合;结构参数;内浓差极化
出版年,卷(期):页码: 2017,37(1):36-43

摘要:
 以不同比例聚乙二醇(PEG400)为添加剂,通过相转化法和界面聚合过程,成功制备了一系列以聚砜为支撑的复合正渗透膜。对铸膜液的热力学和动力学分析表明,PEG400添加量越多,相转化速率越快,而相转化速率又影响了正渗透膜支撑层的形貌结构。不同PEG400含量支撑层的接触角、孔隙率接近。RO测试结果发现,随着PEG400含量增加,复合正渗透膜纯水通量增大,当PEG400含量为8wt%时(PSF-8),正渗透膜的纯水渗透系数(A)值最大(1.62 L/m2·h·bar),膜结构参数(S)值最小(516 μm)。在FO测试中发现,随着PEG400含量的增加,正渗透膜水通量 (Jv) 先增大后减小,在PSF-8时达到最大值,分别为12.5 L/m2h(AL-FS模式,活性皮层面向料液)和23.8 L/m2h(AL-DS模式,活性皮层面向驱动液)。实验表明8wt%的PEG400添加量可以最有效地降低支撑层的内浓差极化程度。
 Effects of PEG400 concentration in the polysulfone (PSF) dope solution on the substrate morphology and performance of the thin-film composite (TFC) forward osmosis (FO) membranes were investigated. Thermodynamic and kinetic analysis showed that the phase inversion was faster at higher PEG400 concentration. The contact angle and porosity of the PSF substrate at various PEG400 concentrations were similar, but the reverse osmosis (RO) water permeability of the TFC FO membrane increased as the PEG400 increased. The structure parameter (S) decreased to 516 μm at PEG400 concentration of 8wt%, and then increased. The TFC FO membrane showed the highest FO water flux (Jv) at 8wt% PEG400 in both AL-FS mode (12.5 L/m2h) and AL-DS mode (23.8 L/m2h). This means that PSF-8 has the lowest internal concentration polarization (ICP). 
第一作者简介: 刘仁啸(1990- ),男,山东青岛人,硕士生,主要研究正渗透膜分离技术,E-mail:seanmiller123@163.com * 通讯作者,E-mail: het@sari.ac.cn

参考文献:
 [1] Cath T, Childress A, Elimelech M, Forward osmosis: Principles, applications, and recent developments[J]. Journal of Membrane Science, 281 (2006) 70-87.
[2] Zhao S, Zou L, Tang C Y, et al., Recent developments in forward osmosis: Opportunities and challenges[J]. Journal of Membrane Science, 396 (2012) 1-21.
[3] Chung T-S, Zhang S, Wang K Y, et al., Forward osmosis processes: Yesterday, today and tomorrow[J]. Desalination, 287 (2012) 78-81.
[4] Coday B D, Xu P, Beaudry E G, et al., The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams[J]. Desalination, 333 (2014) 23-35.
[5] 李刚, 李雪梅, 何涛, 正渗透膜材料与驱动体系的研究[J]. 膜科学与技术, 32 (2012) 104-106.
[6] 李刚, 王周为, 李春霞等, 界面聚合中空纤维正渗透膜的制备和表征[J]. 化工学报, 65 (2014) 3082-3088.
[7] kuang W, Liu Z, Yu H, et al., Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component[J]. Journal of Membrane Science, 497 (2016) 485-493.
[8] Xiao P, Nghiem L D, Yin Y, et al., A sacrificial-layer approach to fabricate polysulfone support for forward osmosis thin-film composite membranes with reduced internal concentration polarisation[J]. Journal of Membrane Science, 481 (2015) 106-114.
[9] Zhou Z, Lee J Y, Chung T-S, Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction[J]. Chemical Engineering Journal, 249 (2014) 236-245.
[10] Han G, Chung T-S, Toriida M, et al., Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination[J]. Journal of Membrane Science, 423-424 (2012) 543-555.
[11] Widjojo N, Chung T-S, Weber M, et al., The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes[J]. Journal of Membrane Science, 383 (2011) 214-223.
[12] Park M J, Phuntsho S, He T, et al., Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. Journal of Membrane Science, 493 (2015) 496-507.
[13] Wang Y, Ou R, Wang H, et al., Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane[J]. Journal of Membrane Science, 475 (2015) 281-289.
[14] Ma N, Wei J, Qi S, et al., Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes[J]. Journal of Membrane Science, 441 (2013) 54-62.
[15] Ghanbari M, Emadzadeh D, Lau W J, et al., Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination[J]. Desalination, 358 (2015) 33-41.
[16] Chou W-L, Yu D-G, Yang M-C, et al., Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers[J]. Separation and Purification Technology, 57 (2007) 209-219.
[17] Idris A, Yet L K, The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance[J]. Journal of Membrane Science, 280 (2006) 920-927.
[18] Garcia-Ivars J, Alcaina-Miranda M-I, Iborra-Clar M-I, et al., Enhancement in hydrophilicity of different polymer phase-inversion ultrafiltration membranes by introducing PEG/Al2O3 nanoparticles[J]. Separation and Purification Technology, 128 (2014) 45-57.
[19] Ma Y, Shi F, Ma J, et al., Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes[J]. Desalination, 272 (2011) 51-58.
[20] Yunos M Z, Harun Z, Basri H, et al., Studies on fouling by natural organic matter (NOM) on polysulfone membranes: Effect of polyethylene glycol (PEG)[J]. Desalination, 333 (2014) 36-44.
[21] Tiraferri A, Yip N Y, Phillip W A, et al., Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure[J]. Journal of Membrane Science, 367 (2011) 340-352.
[22] Jeong B-H, Hoek E M V, Yan Y, et al., Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 294 (2007) 1-7.
[23] Han G, Zhang S, Li X, et al., Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection[J]. Chemical Engineering Science, 80 (2012) 219-231.
[24] 孙本惠, 用相转换法制备非对称膜的凝胶动力学研究[J]. 水处理技术, 19 (1993) 308-312.
[25] Li X, Chen C, Li J, Formation kinetics of polyethersulfone with cardo membrane via phase inversion[J]. Journal of Membrane Science, 314 (2008) 206-211.
[26] Yun Y, Pierre L-C, Dong G, et al., Formation kinetics and characterization of polyphthalazinone ether ketone hollow fiber ultrafiltration membranes[J]. Journal of Membrane Science, 389 (2012) 416-423.
[27] Sahebi S, Phuntsho S, Woo Y C, et al., Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane[J]. Desalination, (2015).
[28] Wang R, Shi L, Tang C Y, et al., Characterization of novel forward osmosis hollow fiber membranes[J]. Journal of Membrane Science, 355 (2010) 158-167.
[29] K.L. LEE R W B a H K L, Membranes for power generation by pressure-retarded osmosis[J]. Journal of Membrane Science, 8 (1981) 141-171.
[30] Yip N Y, Tiraferri A, Phillip W A, et al., High performance thin-film composite forward osmosis membrane[J]. Environmental science & technology, 44 (2010) 3812-3818.
[31] Zhu S, Zhao S, Wang Z, et al., Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate[J]. Journal of Membrane Science, 493 (2015) 263-274.
[32] Ren J, Membrane structure control of BTDA-TDI/MDI (P84) co-polyimide asymmetric membranes by wet-phase inversion process[J]. Journal of Membrane Science, 241 (2004) 305-314.
[33] 田苗苗, 李雪梅, 殷勇等, 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 27 (2015) 1033-1041. 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号