正渗透膜污染特征及抗污染正渗透膜研究进展
作者:王涛,王宁,陆金仁,王志宁,胡云霞
单位: 1. 中国科学院烟台海岸带研究所 山东省环境工程研究中心 中国科学院海岸带环境过程与生态修复重点实验室 烟台 264003; 2. 中国海洋大学 化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100; 3. 中国海洋大学 化学化工学院 青岛 266100
关键词: 正渗透;膜污染;抗污染;表面改性;共聚物
出版年,卷(期):页码: 2017,37(1):125-132

摘要:
 正渗透技术因其能耗低、水回收率高、截留能力强等优势,成为极具发展潜力的膜分离技术。然而,膜污染引起水通量持续下降,膜寿命缩短等问题严重制约了正渗透技术的发展和应用。如何有效控制膜污染已经成为正渗透技术亟需解决的问题。本综述从正渗透膜污染的角度出发,详细总结了正渗透的膜污染特征,全面介绍了抗污染正渗透膜的研究成果。通过对比众多的研究结果发现正渗透膜的性质、膜朝向、原料液性质以及膜过程操作条件是影响正渗透膜污染形成与清除的重要因素。通过优化操作条件虽然可部分减轻膜污染,但不能彻底解决膜污染问题。开发抗污染正渗透膜仍是根治膜污染的重要解决方案。本文最后详细介绍了目前抗污染正渗透膜的制备方法,包括双皮层结构正渗透膜的制备及结构调控、膜表面抗污染改性、开发抗污染亲水膜材料制备正渗透膜等。其中,新型两亲性共聚物作为支撑层材料展现出良好的发展潜力,是未来抗污染正渗透膜的发展方向。
 Forward osmosis (FO) is a new membrane technology with great potential applications because of its low-energy consumption, high water recovery and great rejection. However, the continuous water flux decline and the shorten membrane life, caused by membrane fouling, have limited the further development of forward osmosis. How to effectively improve the membrane antifouling performance has become an important research topic. In this review, fouling characteristics of FO membrane is summarized, and the research progress of antifouled FO membranes is discussed. From literature, it can conclude that membrane properties, membrane orientation, pollutants and operating conditions are most important parameters to affect the fouling formation and membrane cleaning. Thus the development of anti-fouling forward osmosis membrane is crucial to mitigate membrane fouling. Double-skinned membrane structure, membrane surface modification, and the chosen antifouling membrane materials, have been confirmed to be effective strategies for FO membrane fouling prevention. Finally, in this review, the examples of how to improve the antifouling performance of FO membranes are discussed in details, and the promising research directions are pointed out to improve the membrane properties and antifouling performance of FO membranes. 
第一作者简介:王涛(1992-),男,山西省晋城市人,硕士生,研究方向为正渗透膜污染,E-mail: wangt329@163.com. *通讯作者, E-mail: yunxiahu@yic.ac.cn

参考文献:
[1] Han G, Chung T S, Toriida M, et al. Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination [J]. Journal of Membrane Science, 2012, 423: 543-555.
[2] Zhao S, Zou L, Tang C Y, et al. Recent developments in forward osmosis: Opportunities and challenges [J]. Journal of Membrane Science, 2012, 396: 1-21.
[3] Dova M I, Petrotos K B, Lazarides H N. On the direct osmotic concentration of liquid foods. Part I: Impact of process parameters on process performance [J]. Journal of Food Engineering, 2007, 78 (2): 422-430.
[4] Guo W, Ngo H H, Li J. A mini-review on membrane fouling [J]. Bioresource Technology, 2012, 122: 27-34.
[5] 郑猛,吴青芸,周浩媛, 等. 海水淡化反渗透膜微生物污染及防控研究进展[J]. 膜科学与技术, 2015, 35 (1): 123-130.
[6] Altaee A, Zaragoza G. A conceptual design of low fouling and high recovery FO–MSF desalination plant [J]. Desalination, 2014, 343: 2-7.
[7] Lee J, Kim B, Hong S. Fouling distribution in forward osmosis membrane process [J]. Journal of Environmental Sciences, 2014, 26 (6): 1348-1354.
[8] Tang C Y, Fu Q S, Criddle C S, et al. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater [J]. Environmental Science & Technology, 2007, 41 (6): 2008-2014.
[9] Ang W S, Elimelech M. Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation [J]. Journal of Membrane Science, 2007, 296 (1-2): 83-92.
[10] 李刚,李雪梅,柳越, 等. 正渗透膜技术及其应用[J]. 化工进展, 2010, 29(8):1388-1398. 
[11] McCutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis [J]. Journal of Membrane Science, 2006, 284 (1-2): 237-247.
[12] Kim S, Hoek E M V. Modeling concentration polarization in reverse osmosis processes [J]. Desalination, 2005, 186 (1-3): 111-128.
[13] Hancock N T, Cath T Y. Solute coupled diffusion in osmotically driven membrane processes [J]. Environmental Science & Technology, 2009, 43 (17): 6769-6775.
[14] Kim K J, Fane A G, Fell C J D, et al. Fouling mechanisms of membranes during protein ultrafiltration [J]. Journal of Membrane Science, 1992, 68 (1-2): 79-91.
[15] Kwan S E, Bar-Zeev E, Elimelech M. Biofouling in forward osmosis and reverse osmosis: Measurements and mechanisms [J]. Journal of Membrane Science, 2015, 493: 703-708.
[16] Kim Y, Elimelech M, Shon H K, et al. Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure [J]. Journal of Membrane Science, 2014, 460: 206-212.
[17] Lee S, Boo C, Elimelech M, et al. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO) [J]. Journal of Membrane Science, 2010, 365 (1-2): 34-39.
[18] Mi B, Elimelech M. Chemical and physical aspects of organic fouling of forward osmosis membranes [J]. Journal of Membrane Science, 2008, 320 (1-2): 292-302.
[19] Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents [J]. Journal of Membrane Science, 2010, 348 (1-2): 337-345.
[20] Liu Y, Mi B. Combined fouling of forward osmosis membranes: Synergistic foulant interaction and direct observation of fouling layer formation [J]. Journal of Membrane Science, 2012, 407-408: 136-144.
[21] Boo C, Lee S, Elimelech M, et al. Colloidal fouling in forward osmosis: Role of reverse salt diffusion [J]. Journal of Membrane Science, 2012, 390-391: 277-284.
[22] Yoon H, Baek Y, Yu J, et al. Biofouling occurrence process and its control in the forward osmosis [J]. Desalination, 2013, 325: 30-36.
[23] 邢卫红,仲兆祥,景文珩, 等. 基于膜表面与界面作用的膜污染控制方法 [J]. 化工学报, 2013, 64 (1): 173-181.
[24] Tiraferri A, Yip N Y, Phillip W A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure [J]. Journal of Membrane Science, 2011, 367 (1-2): 340-352.
[25] Shi L, Chou S R, Wang R, et al. Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes [J]. Journal of Membrane Science, 2011, 382 (1-2): 116-123.
[26] Zhao S, Zou L, Mulcahy D. Effects of membrane orientation on process performance in forward osmosis applications [J]. Journal of Membrane Science, 2011, 382 (1-2): 308-315.
[27] Duong P H, Chung T S, Wei S, et al. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil-water separation process [J]. Environmental Science & Technology, 2014, 48 (8): 4537-4545.
[28] Wang K Y, Ong R C, Chung T S. Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer [J]. Industrial & Engineering Chemistry Research, 2010, 49 (10): 4824-4831.
[29] Zhang S, Wang K Y, Chung T S, et al. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer [J]. Journal of Membrane Science, 2010, 360 (1-2): 522-535.
[30] Qi S, Qiu C Q, Zhao Y, et al. Double-skinned forward osmosis membranes based on layer-by-layer assembly- FO performance and fouling behavior [J]. Journal of Membrane Science, 2012, 405-406: 20-29.
[31] Setiawan L, Wang R, Li K, et al. Fabrication of novel poly(amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer [J]. Journal of Membrane Science, 2011, 369 (1-2): 196-205.
[32] Qiu C, Setiawan L, Wang R, et al. High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate [J]. Desalination, 2012, 287: 266-270.
[33] Shaffer D L, Jaramillo H, Romero-Vargas Castrillón S, et al. Post-fabrication modification of forward osmosis membranes with a poly(ethylene glycol) block copolymer for improved organic fouling resistance [J]. Journal of Membrane Science, 2015, 490: 209-219.
[34] Romero-Vargas Castrillón S, Lu X, Shaffer D L, et al. Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control [J]. Journal of Membrane Science, 2014, 450: 331-339.
[35] Emadzadeh D, Lau W J, Matsuura T, et al. The potential of thin film nanocomposite membrane in reducing organic fouling in forward osmosis process [J]. Desalination, 2014, 348: 82-88.
[36] Niksefat N, Jahanshahi M, Rahimpour A. The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application [J]. Desalination, 2014, 343: 140-146.
[37] Song X, Wang L, Tang C Y, et al. Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process [J]. Desalination, 2015, 369: 1-9.
[38] Li Y, Chung T S. Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal [J]. International Journal of Hydrogen Energy, 2010, 35 (19): 10560-10568.
[39] Arena J T, McCloskey B, Freeman B D, et al. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis [J]. Journal of Membrane Science, 2011, 375 (1-2): 55-62.
[40] Saraf A, Johnson K, Lind M L. Poly(vinyl) alcohol coating of the support layer of reverse osmosis membranes to enhance performance in forward osmosis [J]. Desalination, 2014, 333 (1): 1-9.
[41] Emadzadeh D, Lau W J, Matsuura T, et al. A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination [J]. Chemical Engineering Journal, 2014, 237: 70-80.
[42] Emadzadeh D, Lau W J, Matsuura T, et al. Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization [J]. Journal of Membrane Science, 2014, 449: 74-85.
[43] Hancock N T, Xu P, Heil D M, et al. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis [J]. Environmental Science & Technology, 2011, 45 (19): 8483-8490.
[44] Dorin R M, Phillip W A, Sai H, et al. Designing block copolymer architectures for targeted membrane performance [J]. Polymer, 2014, 55 (1): 347-353.
[45] Cho Y H, Han J, Han S, et al. Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis [J]. Journal of Membrane Science, 2013, 445: 220-227.
[46] Widjojo N, Chung T S, Weber M, et al. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes [J]. Journal of Membrane Science, 2012, 389: 544-544.
[47] Duong P H, Chisca S, Hong P Y, et al. Hydroxyl functionalized polytriazole-co-polyoxadiazole as substrates for forward osmosis membranes [J]. ACS Applied Materials & Interfaces, 2015, 7 (7): 3960-3973.
[48] Venault A, Liu Y H, Wu J R, et al. Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend [J]. Journal of Membrane Science, 2014, 450: 340-350.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号