陶瓷纳滤膜过渡层的设计与制备研究
作者:邹栋,笪晓薇,邱鸣慧,范益群
单位: 南京工业大学化工学院, 材料化学工程国家重点实验室, 南京 210009
关键词: 陶瓷纳滤膜; 过渡层; 氧化铝; 浸浆涂覆
出版年,卷(期):页码: 2017,37(2):32-39

摘要:
 采用平均粒径为300 nm的Al2O3粉体, 通过超声分散配制成稳定的制膜液, 基于Hagen-Poiseuille和Darcy方程的理论计算, 选择在平均孔径为1 μm的载体上进行浸浆涂膜, 经一次涂覆制备出无粗孔缺陷的Al2O3微滤膜. 研究表明, 制膜液的固含量、粘度、浸浆时间对膜厚有重要影响. 当超声时间大于20 min, 膜层厚度大于40 μm, 烧结温度为 1050 oC, 制备的微滤膜平均孔径为100 nm, 最大孔径为300 nm左右, 孔径分布窄, 渗透率在4000 L·m-2·h-1·MPa-1左右. 进一步以该微滤膜作为底膜, 制备出了小孔径Al2O3超滤膜和ZrO2纳滤膜. 平均孔径为1 μm支撑体大大简化了纳滤膜的制备工艺流程, 降低了能耗, 提高了陶瓷纳滤膜的实际应用价值.该工作给非对称管式纳滤膜制备及产业化提供了简单高效的方法.
 The alumina with average particle size of 300 nm was used to prepare the stable dispersion after ultrasonic treatment, and then was dip-coated on the inner side of the substrate with pore size of 1 μm (based on the Hagen–Poiseuille and Darcy equation). After specific thermal treatment process, the defect free microfiltration membranes without obvious macropore were fabricated by one step. The results showed that the solid content of the dispersion, viscosity and the dipping time had great effect on the membrane thickness. When the time of ultrasonic treatment was over 20 min, the membrane thickness was over 40 μm and the sintering temperature was 1050 oC, the average pore size of microfiltration membranes was 100 nm and the maximum pore size was around 300 nm. The permeability was about 4000 Lm-2h-1MPa-1. Subsequently, the microfiltration membranes as sub-layers were applied to the fabrication of the ultrafiltration and nanofiltration membranes. The substrate with pore size of 1 μm greatly simplified the nanofiltration membrane preparation process, reduced the energy consumption, and improved practical application value of the ceramic nanofiltration membranes. This work provided an easy and cost-effective technique for the preparation and scaling-up of asymmetric tubular nanofiltration membranes.
第一作者简介: 邹 栋(1991- ), 男, 江苏溧阳人, 硕士, 从事陶瓷膜分离材料的制备与应用. *通讯作者,E-mail: yiqunfan@njtech.edu.cn

参考文献:
 [1] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254.
[2] Shahmansouri A, Bellona C. Nanofiltration technology in water treatment and reuse: applications and costs[J]. Water Sci Technol, 2015, 71 (3):309-319. 
[3] Weber R, Chmiel H, Mavrov V. Characteristics and application of new ceramic nanofiltration membranes[J]. Desalination, 2003, 157 (1-3): 113-125.
[4] Cai Y Y, Wang Y, Chen X F, et al. Modified colloidal sol-gel process for fabrication of titania nanofiltration membranes with organic additives[J]. J Membr Sci, 2015, 476:432-441.
[5] Cai Y Y, Chen X F, Wang Y, et al. Fabrication of palladium-titania nanofiltration membranes via a colloidal sol-gel process[J]. Micropor Mesopor Mat, 2015, 201:202-209.
[6] 闻娟娟, 范益群, 无缺陷氧化铝微滤膜的制备研究[J]. 膜科学与技术, 2013, 33 (5):19-24.
[7] Casado Coterillo C, Yokoo T, Yoshioka T, et al. Synthesis and Characterization of Microporous ZrO2 Membranes for Gas Permeation at 200 degrees C[J]. Sep Sci Technol, 2011, 46 (8):1224-1230.
[8] Voigt I, Fischer G, Puhlfurss P, et.al. TiO2-NF-membranes on capillary supports[J]. Sep Purif Technol, 2003, 32 (1-3):87-91.
[9] Qi H, Niu S, Jiang X, et al. Enhanced performance of a macroporous ceramic support for nanofiltration by using alpha-Al2O3 with narrow size distribution[J]. Ceram Int, 2013, 39 (3):2463-2471.
[10] Zhu J, Fan Y Q, Xu N P. Modified dip-coating method for preparation of pinhole-free ceramic membranes[J]. J Membr Sci, 2011, 367 (1-2):14-20.
[11] Da X W, Chen X F, Sun B H, et al. Preparation of zirconia nanofiltration membranes through an aqueous sol-gel process modified by glycerol for the treatment of wastewater with high salinity[J]. J Membr Sci, 2016, 504:29-39.
[12] Chen X F, Zhang W, Lin Y Q, et al. Preparation of high-flux gamma-alumina nanofiltration membranes by using a modified sol-gel method[J]. Micropor Mesopor Mat, 2015, 214:195-203.
[13] 徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用[M]. 北京: 化学工业出版社, 2003.
[14] 笪晓薇. 水相溶胶路线制备ZrO2纳滤膜研究[D]南京:南京工业大学, 2015
[15] Leenaars A F M, Burggraaf A J. The preparation and characterization of alumina membranes with ultrafine pores .2. The formation of supported membranes[J]. J Colloid Interf Sci, 1985, 105 (1): 27-40.
[16] Tiller F M, Tsai C D. Theory of filtration of ceramics .1.slip casting[J]. J Am Ceram Soc, 1986, 69 (12):882-887.
 [17] 丁晓斌, 范益群, 徐南平. 浸浆制备过程中载体微结构及涂膜工艺参数对膜厚度的影响[J]. 化工学报, 2006, 57 (11):2739-2744.
[18] 丁晓斌, 范益群, 徐南平, 浸浆制备过程中陶瓷膜厚度控制及其模型化[J]. 化工学报, 2006, 57 (4): 1003-1008.
[19] Dobrak A, Verrecht B, Van den Dungen H, et al. Solvent flux behavior and rejection characteristics of hydrophilic and hydrophobic mesoporous and microporous TiO2 and ZrO2 membranes[J]. J Membr Sci, 2010, 346 (2): 344-352.
[20] Van Gestel T, Vandecasteele C, Buekenhoudt A, et al. Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability[J]. J Membr Sci, 2002, 207 (1):73-89.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号