板刺式微通道湍流促进器强化SMBR的CFD数值模拟
作者:解芳,刘进荣,王建敏
单位: (内蒙古工业大学,内蒙古呼和浩特010051)
关键词: CFD;浸没式膜生物反应器;板刺式微通道湍流促进器;强化
出版年,卷(期):页码: 2017,37(2):65-71

摘要:
 采用CFD中的Standard k-ε湍流模型模拟板刺式微通道湍流促进器的刺角度及微孔尺寸对浸没式平板膜生物反应器内流场特性的影响,选出对减轻膜污染和浓差极化效果最佳的刺角度及微孔尺寸。在文中通过定性和定量分析附加板刺式微通道湍流促进器后浸没式平板膜生物反应器中的流体速度、静压、湍流动能、湍流强度、湍流耗散率和膜表面剪切力性能指标的变化。从模拟结果可得出,刺角度为60°和微孔半径为0.3 mm时,流体速度、湍流动能和剪切力增加明显,并在微通道湍流促进器附近有涡的产生,从而能有效强化过滤性能,抑制膜表面滤饼层的形成,减缓膜污染。
 Standard k-ε turbulent model in CFD is used to simulate fin angle and micro-pore size of micro-channel turbulence promoters having the influence on hydrodynamics in a submerged flat-sheet membrane bioreactor, therefore, the optimum fin angle and micro-pore size of reducing membrane fouling and concentration polarization is obtained. Through the CFD, the qualitative and quantitative performance of hydrodynamics between micro-channel turbulence promoter and flat-sheet membrane channel was obtained according to the distribution of velocity, static pressure, turbulent kinetic energy, turbulent intensity, turbulent dissipation rate and wall shear stress on the membrane surface. The simulation results showed that fin angle 60°and micro-pore radius 0.3 mm of micro-channel turbulence promoters can increase velocity, turbulent kinetic energy and wall shear stress on the membrane surface and produce eddy in the vicinity of micro-channel turbulence promoters which enhance the filtration performance, disrupt the buildup of cake layer and mitigate membrane fouling.
作者简介:解芳(1975--),女,内蒙古达拉特旗人,博士研究生,副教授,任职于内蒙古工业大学轻工与纺织学院,主要研究方向为水污染控制及过滤材料改性。E-mail:xiefzhl@163.com * 通讯联系人,E-mail:jinrong_liu@126.com

参考文献:
 [1] Meng F G, Chae S R, Drews A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material[J]. Water Research, 2009, 43:1489-1512.
[2] Wang Z W, Wu Z C, Mai S H, et al. Research and applications of membrane bioreactors in China: Progress and prospect[J]. Separation and Purification Technology, 2008, 62: 249-263.
[3] Winzeler H B, Belfort G. Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities[J]. Journal of Membrane Science, 1993, 80: 35-47.
[4] Hilal N, Ogunbiyi O O, Miles N J. Experimental investigation on the separation of bentonite using ceramic membranes: effect of turbulence promoters[J]. Separation Science and Technology, 2008, 43: 286-309.
[5] Joki? A, Zavargo Z, Šereš Z, et al. The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions: A response surface methodology approach[J]. Journal of Membrane Science, 2010, 350: 269-270.
[6] Bellhouse B J, Costigan G, Abhinava K, et al. The performance of helical screw-thread inserts in tubular membranes[J]. Separation and Purification Technology, 2001, 22-23: 89-113.
[7] Ahmad A L, Z B H, Ooi B S. A three-dimensional unsteady hydrodynamic profile of a reciprocating membrane channel[J]. Journal of Membrane Science, 2010, 365: 426-437.
[8] Wardeh S, Morvan H P. CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination[J]. Chemical Engineering Research and Design, 2008, 86: 1107-1116.
[9] Liu Y F, He G H, Liu X D, et al. CFD simulations of turbulent flow in baffle-filled membrane tubes[J]. Separation and Purification Technology, 2009, 67: 14-20.
[10] Ahmed S, Seraji M T, Jahedi J, et al. CFD simulation of turbulence promoters in a tubular membrane channel[J]. Desalination, 2011, 278: 191-198.
[11] Li X, Liu X P, Peng J, et al. Comparison of turbulence promoter geometry on flow pattern from view point of field synergy principle[J]. Procedia Environmental Science, 2011, 11: 1566-1573.
[12] 张晴,樊耀波,魏源送,等,CFD及ASM-CFD在MBR研究中的应用进展[J]. 膜科学与技术,2013,33(2):95-103.
[13] Krsti? D M, Koris A K, Teki? M N. Do static turbulence promoters have potential in cross-flow membrane filtration applications? [J]. Desalination. 2006, 191: 371-375.
[14] Popovi? S, Teki? M. Twisted tapes as turbulence promoters in the microfiltration of milk[J]. Journal of Membrane Science, 2011, 384: 97-106.
[15] Liu Y F, He G H, Li B J, et al. A comparison of cake properties in traditional and turbulence promoter assisted microfiltration of particulate suspensions[J]. Water Research. 2012, 46: 2535-2544.
[16] Liu S X, Peng M, Vane L M. CFD simulation of effect of baffle on mass transfer in a silt-type pervaporation module[J]. Journal of Membrane Science, 2005, 65: 124-136.
[17] Xu N, Xing W H, Xu N P, et al. Application of turbulence promoters in ceramic membrane bioreactor used for municipal wastewater reclamation[J]. Journal of Membrane Science, 2002, 210: 307-313.
[18] Zhen X H, Yu S L, Wang B F, et al. Flux enhancement during ultrafiltraion of produced water using turbulence promoter[J]. Journal of Environment Science, 2006, 18: 1077-1081.
[19] Xie F, Chen W W, Wang J M, et al. CFD and Experimental studies on the hydrodynamic performance of submerged flat-sheet membrane bioreactor equipped with micro-channel turbulence promoters[J]. Chemical Engineering and Processing: Process Intensification, 2016, 99: 72-79.
[20] Xie F, Chen W W, Wang J M, et al. Fouling characteristics and enhancement mechanisms in a submerged flat-sheet membrane bioreactor equipped with micro-channel turbulence promoters with micro-pores[J]. Journal of Membrane Science, 2015, 495: 361-371.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号