SG@GO/PDDA多层膜的制备及其有机溶剂纳滤性能研究
作者:汪林,申洪泮,王乃鑫,纪树兰
单位: 北京工业大学 环境与能源工程学院 绿色催化与分离北京市重点实验室,北京 100124
关键词: 氧化石墨烯,层层自组装,有机溶剂纳滤,溶剂绿,染料脱除
出版年,卷(期):页码: 2018,38(6):48-55

摘要:
 采用溶剂绿7(SG)对氧化石墨烯(GO)片层进行修饰制备得到SG@GO复合材料,以层层自组装法制备SG@GO/聚二甲基二烯丙基氯化铵(PDDA)复合膜并考察该复合膜的有机溶剂纳滤性能。通过透射电镜、原子力显微镜、红外光谱(FTIR)等表征验证了SG对GO的成功改性,改性后GO片层厚度明显增加,同时FTIR谱图中出现磺酸根的特征峰。随着组装的进行,Zeta电位结果显示膜表面电荷成规律性交替变化,X射线衍射谱图中GO的特征峰增强,扫描电镜图中膜层的厚度增加,证明了SG@GO与PDDA的成功组装。同时考察了组装层数、SG浓度、染料种类等条件对复合膜分离性能的影响。结果表明,当SG浓度为1.5 g/L,组装层数为3.5层时,制备的(SG@GO/PDDA)3.5复合膜对甲基蓝/甲醇显示出良好的分离性能,其通量及截留率分别可达到50 L/(m2?h?MPa)及95.2%。此外,该复合膜在400 min连续性能测试过程中,表现出良好的稳定性。
 In this study, solvent green (SG) were utilized to modify graphene oxide nanosheets and then SG@GO/PDDA multilayer membranes were fabricated from the as-prepared SG@GO composite via layer-by-layer self-assembly. The preparation of SG@GO was confirmed by TEM, AFM, FTIR and XPS. The results showed that the thickness of GO nanosheets were increased from 2.2 nm to 2.7 nm due to the deposition of SG molecules. The regular alternation of Zeta potential on the surface indicated the successful assembly between SG@GO and PDDA. This could also be proved by the intensity increase of GO characteristic peak on the XRD curves. Then the organic solvent nanofiltration performance of SG@GO/PDDA membrane was studied. The optimized flux and dye retention for methyl blue/methanol solution could respectively reach 50 L/(m2?h?MPa) and 95.2% when the concentration of SG is 1.5 g/L, assembly layer is 3.5. Besides, the obtained SG@GO/PDDA membrane showed desirable stability which could be demonstrated by the 400-min continuous nanofiltration test.
第一作者简介:汪林(1989-),男,安徽省宣城市人,博士生,主要从事渗透汽化及纳滤方面研究,E-mail:wanglin891208@emails.bjut.edu.cn. *通讯作者,E-mail:jshl@bjut.edu.cn

参考文献:
 [1]邢雅南, 苏保卫, 甄宏艳. 耐溶剂纳滤膜的制备与应用研究进展[J]. 化工进展, 2015, 34(11): 3832-3840.
[2]Karan S, Jiang Z, Livingston A G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351.
[3]Cheng X Q, Zhang Y L, Wang Z X, et al. Recent advances in polymeric solvent‐resistant nanofiltration membranes[J]. Adv Polym Technol, 2014, 33(S1).
[4]Soroko I, Bhole Y, Livingston A G. Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes[J]. Green Chem, 2011, 13(1): 162-168.
[5]吴晓莉, 王景涛, 张浩勤, 等. HPAN/PEI-PDMS 有机溶剂纳滤复合膜的制备与性能[J]. 膜科学与技术, 2016, 36(2): 13-19.
[6]Chen D. Solvent‐resistant nanofiltration membranes based on multilayered polyelectrolytes deposited on silicon composite[J]. J Appl Polym Sci, 2013, 129(6): 3156-3161.
[7]Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. Science, 2015, 348(6233): aaa2491.
[8]Zhang H, Mao H, Wang J, et al. Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration[J]. J Membr Sci, 2014, 470: 70-79.
[9]Lee J Y, Qi S, Liu X, et al. Synthesis and characterization of silica gel–polyacrylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly[J]. Sep Purif Technol, 2014, 124: 207-216.
[10]Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2010, 39(1): 228-240.
[11]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457.
[12]Liu S, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5(9): 6971-6980.
[13]Liu J, Tang J, Gooding J J. Strategies for chemical modification of graphene and applications of chemically modified graphene[J]. J Mater Chem 2012, 22(25): 12435-12452.
[14]Su Q, Pang S, Alijani V, et al. Composites of graphene with large aromatic molecules[J]. Adv Mater, 2009, 21(31): 3191-3195.
[15]Zhang W, Han H, Bai H, et al. A highly efficient and visualized method for glycan enrichment by self-assembling pyrene derivative functionalized free graphene oxide[J]. Anal Chem, 2013, 85(5): 2703-2709.
[16]Wang L, Wang N, Li J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Sep Purif Technol, 2016, 160: 123-131.
[17]Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. J Membr Sci, 2015, 477: 93-100.
[18]Vanherck K, Hermans S, Verbiest T, et al. Using the photothermal effect to improve membrane separations via localized heating[J]. J Mater Chem, 2011, 21(16): 6079-6087.
[19]Vanherck K, Vankelecom I, Verbiest T. Improving fluxes of polyimide membranes containing gold nanoparticles by photothermal heating[J]. J Membr Sci, 2011, 373(1-2): 5-13.
[20]Vanherck K, Aerts A, Martens J, et al. Hollow filler based mixed matrix membranes[J]. Chem Commun, 2010, 46(14): 2492-2494.
[21]Geens J, Boussu K, Vandecasteele C, et al. Modelling of solute transport in non-aqueous nanofiltration[J]. J Membr Sci, 2006, 281(1-2): 139-148.
[22]Basu S, Maes M, Cano-Odena A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks[J]. J Membr Sci, 2009, 344(1-2): 190-198.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号