交联聚酰亚胺耐溶剂超滤膜的制备及性能研究
作者:李树轩,黄良伟,苏保卫,高学理
单位: (中国海洋大学 化学化工学院 海洋化学理论与工程技术教育部重点实验室,青岛 266100)
关键词: 聚酰亚胺;相转化;耐溶剂超滤膜;交联
出版年,卷(期):页码: 2018,38(5):47-54

摘要:
 以商品聚酰亚胺(PI)为原料,采用相转化法和化学交联制备了交联聚酰亚胺耐溶剂超滤(SRUF)膜,分别考察了PI浓度、空气蒸发时间、刮膜厚度等因素对SRUF膜分离性能的影响,分析了各个因素对膜微观结构的影响,表征了SRUF膜在交联前后的化学结构的变化,并考察了膜的耐溶剂性能。结果表明,最优的制膜条件为:PI浓度20 wt%,蒸发时间20 s,刮膜厚度220 μm,乙二胺交联时间5 h,此时PI超滤膜的纯水通量可达790.5 L/(m2·h),对牛血清蛋白(BSA)的截留率为84.6%。所制备的SRUF膜在DMF中浸泡60天后,截留率仅下降2%,在DMF、NMP、DMSO、THF中浸泡三个月后,膜面没有明显变化,说明该膜具有优异的耐有机溶剂性能。
 A kind of cross-linked polyimide (PI) membrane was prepared from commercial PI polymer (Lenzing P84) using phase inversion and chemical cross-linking for solvent resistant ultrafiltration (SRUF). The effect of PI polymer concentration, solvent evaporation time and membrane thickness on the separation performance of the SRUF membranes, and the influence of these factors on the microstructure of the SRUF membranes were analyzed. The changes in the chemical structure of the SRUF membranes before and after cross-linking were characterized, and the solvent resistance of the membranes was investigated. The results showed that the optimal preparation conditions were the PI polymer concentration of 20.0 wt%, solvent evaporation time of 20 s, casting layer thickness of 220 μm and crosslinking time of 5 h. Under the optimal preparation conditions, the pure water flux of the PI SRUF membrane can reach 790.5 L/(m2·h), while the rejection of BSA can reach 84.6%. The rejection of BSA only decreased by 2% after the SRUF membranes being soaked in DMF at room temperature for 60 days. There was no obvious change on the membrane surface after immersing in DMF, NMP, DMSO, and THF, respectively, for three months, indicating that the SRUF membrane we prepared has excellent organic solvent resistance. 
李树轩(1990-),男,山东邹城,硕士研究生,研究方向:膜分离技术,E-mail: lsxouc@163.com *通讯联系人,Tel/Fax.: +86-532-66786371;E-mail: subaowei@ouc.edu.cn

参考文献:
 [1] P Marchetti, M F Jimenez Solomon, G Szekely, et al, Molecular Separation with Organic Solvent Nanofiltration: A Critical Review, Chem Rev, 114 (2014) 10735-10806.
[2] P Vandezande, L E M Gevers, I F J Vankelecom, Solvent resistant nanofiltration: separating on a molecular level, Chem Soc Rev, 37 (2008) 365-405.
[3] B Sabzi Dizajikan, M Asadollahi, S A Musavi, et al, Preparation of poly(vinyl chloride) (PVC) ultrafiltration membranes from PVC/additive/solvent and application of UF membranes as substrate for fabrication of reverse osmosis membranes, J Appl Polym Sci, (2018) 46267.
[4] G Kang, Y Cao, H Zhao, et al, Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate membranes with excellent antifouling and solvent-resistant properties, J Membr Sci, 318 (2008) 227-232.
[5] P Zschocke, H Strathmann, Solvent resistant membranes from poly-(p-phenylene-terephthalamide), Desalination, 34 (1980) 69-75.
[6] I C Kim, J H Kim, K H Lee, et al, Preparation and properties of soluble copolysulfoneimide and performance of solvent-resistant ultrafiltration membrane, J Appl Polym Sci, 85 (2002) 1024-1030.
[7] 丁孟贤, 聚酰亚胺:化学、结构与性能的关系及材料, 科学出版社, 2006.
[8] M H Davood Abadi Farahani, D Hua, T S Chung, Cross-linked mixed matrix membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux, J Membr Sci, 548 (2018) 319-331.
[9] M H Davood Abadi Farahani, D Hua, T S Chung, Cross-linked mixed matrix membranes consisting of carboxyl-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN), Sep Purif Technol, 186 (2017) 243-254.
[10] C Ba, J Economy, Preparation of PMDA/ODA polyimide membrane for use as substrate in a thermally stable composite reverse osmosis membrane, J Membr Sci, 363 (2010) 140-148.
[11] D W Mangindaan, N M Woon, M S Gui, et al, P84 polyimide membranes modified by a tripodal amine for enhanced pervaporation dehydration of acetone, Chem Eng Sci, 122 (2015) 14-23.
[12] H B Park, Y K Kim, M L Ji, et al, Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes, J Membr Sci, 229 (2004) 117-127.
[13] Y Kase, Gas separation by polyimide membranes, in: T. Matsuura (Ed.), Advanced Membrane Technology and Applications,John Wiley & Sons, Inc., (2008) 581-589.
[14] K Vanherck, G Koeckelberghs, I F J Vankelecom, Crosslinking polyimides for membrane applications: A review, Prog Polym Sci, 38 (2013) 874-896.
[15] M Khayet, C Feng, T Matsuura, Morphological study of fluorinated asymmetric polyetherimide ultrafiltration membranes by surface modifying macromolecules, J Membr Sci, 213 (2003) 159-180.
[16] 俞三传, 高从堦, 浸入沉淀相转化法制膜, 膜科学与技术, (2000) 36-41.
[17] 陈立新, 沈新元, 相转化法的湿法成膜机理, 膜科学与技术, (1997) 2-7+19.
[18] A K Holda, B Aernouts, W Saeys, et al, Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes, J. Membr. Sci., 442 (2013) 196-205.
[19] A F Ismail, P Y Lai, Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation, Sep Purif Technol, 33 (2003) 127-143.
[20] X Jian, D Ying, G He, et al, Preparation of UF and NF poly (phthalazine ether sulfone ketone) membranes for high temperature application, J Membr Sci, 161 (1999) 185-191.
[21] 丁马太, 何旭敏, 丁俊琪, 等, 聚氯乙烯/聚丙烯腈共混超滤膜的研究 Ⅲ.制膜工艺条件对共混超滤膜结构与性能的影响, 水处理技术, (1992) 4-10.
[22] D W Mangindaan, M S Gui, T S Chung, Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking, J Membr Sci, 458 (2014) 76-85.
[23] Y H See Toh, F W Lim, A G Livingston, Polymeric membranes for nanofiltration in polar aprotic solvents, J Membr Sci, 301 (2007) 3-10.
[24] T S Chung, L Shao, P S Tin, Surface Modification of Polyimide Membranes by Diamines for H2 and CO2 Separation, Macromol Rapid Commun, 27 (2006) 998-1003.
[25] X Qiao, T S Chung, K P Pramoda, Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol, J Membr Sci, 264 (2005) 176-189.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号