含氟三苯二胺结构强化聚酰亚胺气体渗透性
作者:王汉利12,阮雪华1,代岩1,贺高红1,单体美2,王磊12,孟祥青2,许国锋2
单位: 1.大连理工大学 精细化工国家重点实验室,膜科学与技术研发中心,石油与化学工程学院,辽宁省石化行业高效节能分离技术工程实验室,盘锦 124221; 2.山东华夏神舟新材料有限公司,山东东岳集团含氟功能膜国家重点实验室,淄博 255000
关键词: 结构设计;含氟聚酰亚胺;气体渗透性;分子模拟
出版年,卷(期):页码: 2018,38(6):34-40

摘要:
 在玻璃态聚合物中引入立体侧基,能够降低主链堆叠、增加自由体积,提高聚合物的气体渗透性。本文提出利用立体结构的六氟三苯二胺(BABTFMM),同六氟二酐(6FDA)进行缩聚制备具有高气体渗透性的含氟聚酰亚胺,采用巨正则蒙特卡罗(GCMC)和分子动力学(MD)方法预测了其气体渗透分离性能。分子模拟结果表明,二胺单体中的六氟二甲苯侧基,通过空间位阻和主链构型限制,增加了含氟聚酰亚胺的主链间距,降低了堆积密度、增加了自由体积,可以提高含氟聚酰亚胺的气体渗透性。制备了6FDA-BABTFMM和6FDA-ODA两种含氟聚酰亚胺的均质膜进行气体渗透性能测试。结果表明,气体渗透性能测试结果同分子模拟结果一致,6FDA-BABTFMM较6FDA-ODA型聚酰亚胺的渗透性大幅增加,O2、N2、CH4和CO2渗透速率分别为75.2、20.5、17.2、311.3 Barrer。
 The incorporation of stereo side groups in the glassy polymer is an effective method to reduce the accumulation of the main chain, increase the free volume, and increase the gas permeability of the polymer. In this paper, the hexafluorotriphenylenediamine(BABTFMM) with tri-dimensional structure was polycondensed with hexafluoro dianhydride (6FDA) to prepare polyimides with high gas permeabilities, and using Grand Canonical Monte Carlo and molecular dynamics methods to predict its gas permeation separation performance. Homogeneous membranes were prepared for experimental test. The results of molecular simulations show that the hexafluoroxylene side groups in the diamine monomer is useful to increase the main chain spacing of the polyimide, reduce the packing density, and increase the free volume by the effect of steric hindrance and main chain configuration restriction, as a result, the gas permeability of 6FDA-BABTFMM polyimides is improved. Homogenous films of 6FDA-BABTFMM and 6FDA-ODA fluorine-containing polyimide were prepared for gas permeability test. The gas permeation performance test results are consistent with those of the molecular simulation. The permeability of 6FDA-BABTFMM is significantly higher than that of 6FDA-ODA polyimide, and the permeation rates of oxygen, nitrogen, methane, and carbon dioxide are 75.2, 20.5, 17.2, 311.3 bar, respectively.
第一作者简介:王汉利(1974-),男,山东滨州博兴人,博士研究生,高级工程师,主要研究方向为含氟膜材料制备及气体膜分离,Email:whl7327@126.com;  通讯作者,Email:hgaohong@dlut.edu.cn

参考文献:
 [1] 张鑫巍,范广宇,李恕广,等. 6FDA型聚酰亚胺共聚物(6FDA-TMPDA-DABA)的合成及气体渗透性能测试 [J]. 膜科学与技术, 2002,22(2):5-9.
[2] 唐娜, 李彦, 项军,等. 化学亚胺化法聚酰亚胺超滤膜的制备及表征[J]. 膜科学与技术, 2016,36(6):61-69.
[3] 丑树人, 任吉中, 李晖,等. 高性能聚醚酰亚胺中空纤维气体分离膜的制备及分离性能[J]. 膜科学与技术, 2010,30(3):21-26.
[4] Stem S A, Mi,Yamamoto H.Structuer /Permebaility Relationships of Polyimide Membranes. Applications to the Separation of Gas Mixtures.J Polym Sci:Part B:Polym B: Polym Phy, 1989,27,1887-1909.
[5] Langsam M, Burgoyne W F. Effects of diamine monomer structure on the gas permeability of polyimides. I. Bridged diamines[J]. Journal of Polymer Science Part A Polymer Chemistry, 1993, 31(4):909-921.
[6] 黄旭,邵路,孟令辉,等.聚酰亚胺基气体分离膜的改性方法及其最新进展[J]. 膜科学与技术, 2009,29(1):101-108.
[7] Tong H, Hu C, Yang S, et al. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure[J]. Polymer, 2015, 69:138-147.
[8] 张立书. 分子模拟法研究乙烯/1-己烯的气体渗透性及分子结构影响因素的分析[D]. 北京:北京化工大学, 2008.
[9] Pavel D, Shanks R. Molecular dynamics simulation of diffusion of O2, and CO2, in blends of amorphous poly(ethylene terephthalate) and related polyesters[J]. Molecular Simulation, 2003, 28(21):939-969.
[10] 陈瑜. 分子模拟研究气体在含氟聚酰胺酰亚胺膜中的渗透行为[D]. 厦门:厦门大学, 2009.
[11] Matthias Heuchel, Dieter Hofmann, Pullumbi P. Molecular Modeling of Small-Molecule Permeation in Polyimides and Its Correlation to Free-Volume Distributions[J]. Macromolecules, 2004, 37(1):201-214.
[12] Karayiannis N C, Mavrantzas V G, Theodorou D N. Detailed Atomistic Simulation of the Segmental Dynamics and Barrier Properties of Amorphous Poly(ethylene terephthalate) and Poly(ethylene isophthalate)[J]. Macromolecules, 2004, 37(8):2978-2995.
[13] Branken D J, Krieg H M, Lachmann G, et al. Modelling sorption and diffusion of NF3, and CF4, in Teflon AF perfluoropolymer membranes[J]. Journal of Membrane Science, 2014, 470(470):294-306.
[14] Sacristan J, Mijangos C. Free Volume Analysis and Transport Mechanisms of PVC Modified with Fluorothiophenol Compounds. A Molecular Simulation Study[J]. Macromolecules, 2010, 43(17):7357-7367.
[15] 代岩,杨晓辰,盖丽梅,郗元.气体在聚三氟丙基甲基硅氧烷膜中的渗透性[J/OL].现代化工:1-6[2018-05-17].http://123.206.67.90:2066/kcms/detail/11.2172.TQ.20180326.0935.044.html.
[16] Yampolskii Y. Polymeric Gas Separation Membranes[J]. Macromolecules, 1999, 45(8): 3298-3311.
[17] Fried J R. Gas Diffusion and Solubility in Poly(organophosphazenes): Results of Molecular Simulation Studies[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2006, 16(4):407-418.
[18] Pryde C A. IR studies of polyimides I:effects of chemical and physical changes during cure[J]. Journal of Polymer Science,Part A:Polymer Chemistry,1989,27:711-754.
[19] 宋超然,徐勇,等. 低热膨胀系数共聚型聚酰亚胺薄膜的制备与表征[J]. 现代塑料加工应用,2018,30(1):16-18
[20] Yeom C K, Lee J M, Hong Y T, et al. Analysis of permeation transients of pure gases through dense polymeric membranes measured by a new permeation apparatus[J]. Journal of Membrane Science, 2000, 166(1):71-83.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号