电化学能源转化膜与膜过程研究进展
作者:王保国
单位: 清华大学化学工程系,北京 100084
关键词: 离子传导膜;能源转化;稳定性;电化学膜反应器; 膜电极
出版年,卷(期):页码: 2020,40(1):179-187

摘要:
 由于可再生清洁能源发展和交通运输电动化,迫切需要大规模电化学能源转化与储存装置。电化学体系包含氧化/还原两个部分,需要用膜将氧化剂和还原剂隔开,同时还需要通过离子传导连通内电路,实现连续的电化学反应。本文针对能源转化与储能技术需求,阐述近年来发展的高稳定性离子传导膜制备方法,以燃料电池、液流电池、电解水制氢过程为对象,分析电化学能源转化过程对离子膜的性能要求。在归纳能源转化膜过程,共同科学原理和技术特征基础上,讨论膜电化学反应器的基本内涵。阐明膜电极能够将“膜分离”与“膜催化反应”集成于一体,强调膜电极对电化学能源转化过程的重要性,展望高性能膜电极的发展途径。
 Due to the development of renewable clean energy and the electrical vehicles, massive electrochemical energy conversion and storage devices are urgently needed. The electrochemical system is usually composed of two parts: oxidation/reduction. The oxidant and reductant need to be separated by a membrane separator, moreover, the internal circuit needs to be connected by ion permeation through the membrane to realize continuous electrochemical reaction. Aiming at the demand from electricity energy conversion and storage technologies, this paper describes the methods for preparing high stability ion conduction membranes recent years, and analyzes the requirements for ionic membranes in electrochemical system, such as PEM fuel cells, redox flow batteries and water electrolysis to produce hydrogen. Based on the common scientific principles and technical characteristics for energy conversion with membrane processes, this paper clarifies the concept framework of membrane electrochemical reactor, emphasizes the importance of MEA (membrane electrode assembly) which combines the "membrane separation" with "membrane catalyzed reaction" in electrochemical energy conversion processes, and shows possible approach to develop high-performance MEA.
第一作者简介:王保国(1965-),男,河北省人,教授, 研究方向为膜法电化学能源转化与储能,E-mail:bgwang@tsinghua.edu.cn

参考文献:
 [1]王培灿,雷青,刘帅,王保国,电解水制氢MoS2催化剂研究与氢能技术展望[J],化工进展, 2019, 38(1): 278-290.
[2]M. Reuß, T. Grube, M. Robinius, et. al. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model[J], Applied Energy 2017, 200: 290–302. 
[3]Michael B., Marcel W. The hydrogen Economy-Vision or reality? [J] Int J Hydrogen Energy 2015, 40:7903-7919. 
[4]青格乐图、郭伟男、刘平、王保国,全钒液流电池的隔膜研究与应用[J],电化学,2015,21(5): 445~452.
[5]宋士强,陈晓,郭伟男,范永生,王保国 纳米多孔质子传导膜中钒离子和水分子迁移行为研究[J],膜科学与技术,2014,34(1): 9~14.
[6]青格乐图, 郭伟男,范永生, 王保国. 全钒液流电池用质子传导膜研究进展[J]. 化工学报, 2013, 64(2): 427-435. 
[7]王保国 新能源领域的质子交换膜研究与应用进展[J],膜科学与技术,2010,30(1): 1~8.
[8]Xiangguo T, Yongtao Z, Jingyu X, Zenghua W, Xinping Q, Liquan C. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions[J]. J. Membr. Sci., 2009, 341:149-154
[9]Qingtao L, Huamin Z, Jian C, Peng Q, Yunfeng Z. Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications[J]. J. Membr. Sci., 2008, 311:98-103
[10]郭伟男, 吴旭冉, 青格乐图, 范永生, 王保国 多层界面聚合法制备质子传导膜[J],膜科学与技术,2014,34(4), 6~11.
[11]Bingyang L, Baoguo W, Zhenhao L, Geletu Q. Synthesis of nanoporous PVDF membranes by controllable crystallization for selective proton permeation[J],J. Membr. Sci., 2016,517:111–120.
[12]李冰洋,刘珍豪,王保国,聚偏氟乙烯纳米多孔膜结构调控及离子传递特性[J],化工学报,2017, 68(2): 732-738.
[13]王保国,龙飞, 范永生,刘平. 一种质子传导膜的制备方法[D]. 中国发明专利号:2009100770246,授权日2011年5月11日. 
[14]贾志军、宋士强、王保国 液流电池储能技术研究现状与展望[J],储能科学与技术,2012,1(1): 50~57.
[15]丁玉龙,来小康,陈海生. 储能技术及应用[M]. 北京:化工出版社,2019. 33-119.
[16]王保国,范永生,韩洪涛,徐冬清, 成旭光. 一种液流电池的双极板框和电堆[P]. 中国发明专利号:2010101386824, 授权日2013年1月30日.
[17]王保国,韩洪涛,范永生,成旭光,陈晓,宋士强. 一种液流电池的嵌入式电极框[P]. 中国发明专利号: 2012100109518, 授权日2014年10月29日.
[18]王保国,范永生,陈晓,刘平, 徐冬清,青格乐图. 一种基于电位差参数的液流电池荷电状态在线检测方法[P]. 中国发明专利号: 200910088258O, 授权日2011年8月17日. 
[19]谢聪鑫,郑 琼, 李先锋,张华民. 液流电池技术的最新进展[J], 储能科学与技术,2017, 6(5):1050-1057. 
[20]Xueqi X, Qinghua L, Jiang L, Zhihua H, Baoguo W, John P. L. A nonaqueous all organic semisolid flow battery[J]. Chem. Commun.,2019, 55:14214-14217. 
[21]Xueqi X, Qinghua L, Wenqiang X, Wenbin L, Junqing L, Baoguo W, John P. L. All-Liquid Electroactive Materials for High Energy Density Organic Flow Battery[J]. ACS Appl. Energy Mater. 2019, 2: 2364−2369. 
[22]Ming G, Di-Yan W, Chia C. C., Bing-Joe H, Hongjie D. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction[J], Nano Research 2016, 9(1): 28–46. 
[23]Abdol A.H, Alhassan S T, Kamarudin S.K., Hanapi S. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport[J]. J. Power Sources, 2016, 309: 56-65. 
[24]王保国, 王培灿, 雷青, 等. 一种电解水制氢气的方法及装置[D].中国发明专利号:2016100451965,授权日2018年10月30日. 
[25]刘帅,雷青,王保国,聚苯并咪唑膜用于膜法酸碱两性电解水制氢研究[J],膜科学与技术,2019,38(5), 1~7.  
[26]Qing L, Baoguo W, Peican W, Shuai L. Hydrogen generation with acid/alkaline amphoteric water electrolysis[J]. J. Energy Chemistry,2019,38:162-169. 
[27]Breitwieser M, Klingele M, Vierrath S. et al. Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches[J]. Advanced Energy Materials, 2018, 8 (4), 1701257.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号