染料分离有机纳滤膜制备技术研究进展
作者:石紫,王志,王宠,王纪孝
单位: 天津大学化工学院化学工程研究所,天津市膜科学与海水淡化技术重点实验室,化学工程联合国家重点实验室(天津大学),天津化学化工协同创新中心,天津 300350
关键词: 纳滤膜;染料分离;膜制备;界面聚合;研究进展
出版年,卷(期):页码: 2020,40(1):340-351

摘要:
 粗染料纯化与染料、印染废水处理是染料工业的重中之重,两者的根本目的都是实现染料与无机盐的高效分离。利用纳滤膜对染料高截留和对无机盐离子低截留等特点,可以实现含盐染料溶液的高效脱盐浓缩。本文着重综述了近年来研究者采用相转化、多孔基膜表面改性、层层组装和界面聚合等方法制备染料分离纳滤膜所取得的研究进展,并对以上制膜方法存在的问题和适用的分离体系进行了深入分析。最后,基于目前纳滤法纯化染料及处理染料、印染废水存在的问题,对染料分离纳滤膜研究方向和发展前景进行了总结与展望。
 Crude dye purification and dyeing and printing wastewater treatment are significant in dye industry. For both of them, the fundamental goal is to achieve efficient separation of dyes and inorganic salts. Nanofiltration membranes possessing high dye retention and low inorganic salt retention can effectively achieve desalination and concentration of dyes in salt-containing dye solutions. In this review, the research progresses of dye separation nanofiltration membranes prepared by phase inversion, surface modification of porous membranes, layer-by-layer assembly and interfacial polymerization were reviewed, and the shortages and suitable separation systems of these methods were analyzed deeply. In the end, based on the existing issues of nanofiltration technique in crude dye purification and dyeing and printing wastewater treatment currently, the research directions and development prospects of dye separation nanofiltration membranes were summarized and forecasted.
第一作者简介:石紫(1995-),女,河北承德人,硕士,从事纳滤膜制备研究. *通讯作者,E-mail:wangzhi@tju.edu.cn

参考文献:
 [1] Zhao S, Wang Z. A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination[J]. J Membr Sci, 2017, 524: 214-224.
[2] Lin J, Tang C Y, Ye W, et al. Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment[J]. J Membr Sci, 2015, 493: 690-702.
[3] Han R, Zhang S, Xing D, et al. Desalination of dye utilizing copoly(phthalazinone biphenyl ether sulfone) ultrafiltration membrane with low molecular weight cut-off[J]. J Membr Sci, 2010, 358(1): 1-6.
[4] 王湛, 王志, 高学理. 膜分离技术基础[M].// 北京: 化学工业出版社, 2018.
[5] Wang R, Shi X, Zhang Z, et al. Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation[J]. J Membr Sci, 2019, 586: 274-280.
[6] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254.
[7] 蔡惠如, 高从堦. 膜分离技术在染料行业中的应用[J]. 膜科学与技术, 2002, 22(02): 37-39.
[8] 周谨. 膜分离技术在印染行业清洁生产中的应用[J]. 水处理技术, 2011, 37(01): 9-13.
[9] Paul M, Jons S D. Chemistry and fabrication of polymeric nanofiltration membranes: A review[J]. Polymer, 2016, 103: 417-456.
[10] Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. J Membr Sci, 2011, 375(1): 1-27.
[11] 张菁, 张庆印, 王泽瑞. 纳滤膜的制备技术[J]. 现代化工, 2018, 38(4): 27-31+33.
[12] Brami M V, Oren Y, Linder C, et al. Nanofiltration properties of asymmetric membranes prepared by phase inversion of sulfonated nitro-polyphenylsulfone[J]. Polymer, 2017, 111: 137-147.
[13] Sabzroo N, Bastami T R, Karimi M, et al. Synthesis and characterization of magnetic poly(acrylonitrile-co-acrylic acid) nanofibers for dispersive solid phase extraction and pre-concentration of malachite green from water samples[J]. J Ind Eng Chem, 2018, 60: 237-249.
[14] Xia Q C, Wang J, Wang X, et al. A hydrophilicity gradient control mechanism for fabricating delamination-free dual-layer membranes[J]. J Membr Sci, 2017, 539: 392-402.
[15] Nasrollahi N, Vatanpour V, Aber S, et al. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties[J]. Sep Purif Technol, 2018, 192: 369-382.
[16] Xu Y, Tognia M, Guo D, et al. Facile preparation of polyacrylonitrile-co-methylacrylate based integrally skinned asymmetric nanofiltration membranes for sustainable molecular separation: An one-step method[J]. J Colloid Interf Sci, 2019, 546: 251-261.
[17] Sabir A, Falath W, Jacob K I, et al. Integrally skinned nano-cellular crosslinked asymmetric thin films infused with PEO-PPO-PEO block copolymer/ZnO-NPs for desalination using sea salt[J]. Mater Chem Phys, 2016, 183: 595-605.
[18] Amirilargani M, Sadrzadeh M, Sudhölter E J R, et al. Surface modification methods of organic solvent nanofiltration membranes[J]. Chem Eng J, 2016, 289: 562-582.
[19] Wei C, He Z, Lin L, et al. Negatively charged polyimide nanofiltration membranes with high selectivity and performance stability by optimization of synergistic imidization[J]. J Membr Sci, 2018, 563: 752-761.
[20] Zhang Q, Wang H, Zhang S, et al. Positively charged nanofiltration membrane based on cardo poly(arylene ether sulfone) with pendant tertiary amine groups[J]. J Membr Sci, 2011, 375(1): 191-197.
[21] Zeng G, Ye Z, He Y, et al. Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater[J]. Chem Eng J, 2017, 323: 572-583.
[22] Zhu J, Guo N, Zhang Y, et al. Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP[J]. J Membr Sci, 2014, 465: 91-99.
[23] Safarpour M, Vatanpour V, Khataee A. Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance[J]. Desalination, 2016, 393: 65-78.
[24] Zhu J, Tian M, Zhang Y, et al. Fabrication of a novel “loose” nanofiltration membrane by facile blending with Chitosan–Montmorillonite nanosheets for dyes purification[J]. Chem Eng J, 2015, 265: 184-193.
[25] Ye C C, Zhao F Y, Wu J K, et al. Sulfated polyelectrolyte complex nanoparticles structured nanoflitration membrane for dye desalination[J]. Chem Eng J, 2017, 307: 526-536.
[26] Cheng X Q, Wang Z X, Guo J, et al. Designing multifunctional coatings for cost-effectively sustainable water remediation[J]. ACS Sustain Chem Eng, 2018, 6(2): 1881-1890.
[27] Van Der Bruggen B, Curcio E, Drioli E. Process intensification in the textile industry: the role of membrane technology[J]. J Environ Manage, 2004, 73(3): 267-274.
[28] Zhang C, Ou Y, Lei W, et al. CuSO4/H2O2‐induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angew Chem Int Ed, 2016, 55(9): 3054-3057.
[29] Xu Y, Li Z, Su K, et al. Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater[J]. Chem Eng J, 2018, 341: 371-382.
[30] Cheng C, Li S, Zhao W, et al. The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings[J]. J Membr Sci, 2012, 417-418: 228-236.
[31] Wang J, He R, Han X, et al. High performance loose nanofiltration membranes obtained by a catechol-based route for efficient dye/salt separation[J]. Chem Eng J, 2019, 375: 121982.
[32] Zhu J Y, Wang J, Uliana A A, et al. Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide-copper nanocomposites[J]. ACS Appl Mater Inter, 2017, 9(34): 28990-29001.
[33] Yang H C, Wu Q Y, Wan L S, et al. Polydopamine gradients by oxygen diffusion controlled autoxidation[J]. Chem Commun, 2013, 49(89): 10522-10524.
[34] Zhu J Y, Tsehaye M T, Wang J, et al. A rapid deposition of polydopamine coatings induced by iron (III) chloride/hydrogen peroxide for loose nanofiltration[J]. J Colloid Interf Sci, 2018, 523: 86-97.
[35] Wang J, Zhu J Y, Tsehaye M T, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine[J]. J Mater Chem A, 2017, 5(28): 14847-14857.
[36] Li Q, Liao Z, Fang X, et al. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation[J]. J Membr Sci, 2019, 584: 324-332.
[37] 刘兴, 邓慧宇, 段龙繁, 等. 抗污染高分子纳滤膜研究进展[J]. 膜科学与技术, 2018, 38(05): 113-121.
[38] 李红宾, 石文英, 朱红英, 等. 耐污染性复合纳滤膜制备技术研究进展[J]. 水处理技术, 2016, 42(6): 1-7.
[39] Zhong P S, Widjojo N, Chung T-S, et al. Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater[J]. J Membr Sci, 2012, 417-418: 52-60.
[40] Akbari A, Desclaux S, Rouch J C, et al. Application of nanofiltration hollow fibre membranes, developed by photografting, to treatment of anionic dye solutions[J]. J Membr Sci, 2007, 297(1-2): 243-252.
[41] Zhang R, Su Y, Zhao X, et al. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine)[J]. J Membr Sci, 2014, 470: 9-17.
[42] Zhang L H, Guan H F, Zhang N, et al. A loose NF membrane by grafting TiO2-HMDI nanoparticles on PES/beta-CD substrate for dye/salt separation[J]. Sep Purif Technol, 2019, 218: 8-19.
[43] Tekinalp Ö, Alsoy Altinkaya S. Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition[J]. J Colloid Interf Sci, 2019, 537: 215-227.
[44] Chen Q, Yu P, Huang W, et al. High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal[J]. J Membr Sci, 2015, 492: 312-321.
[45] Wang L, Wang N, Li J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Sep Purif Technol, 2016, 160: 123-131.
[46] Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environ Sci Technol, 2013, 47(8): 3715-3723.
[47] Wang N, Ji S, Zhang G, et al. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation[J]. Chem Eng J, 2012, 213: 318-329.
[48] Guo H, Chen M, Liu Q, et al. LbL assembly of sulfonated cyclohexanone–formaldehyde condensation polymer and poly(ethyleneimine) towards rejection of both cationic ions and dyes[J]. Desalination, 2015, 365: 108-116.
[49] Kang H, Shi J, Liu L, et al. Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes[J]. Appl Surf Sci, 2018, 428: 990-999.
[50] 李俊俊, 陈涛, 刘逸, 等. 哌嗪量对聚酰胺复合纳滤膜性能的影响[J]. 膜科学与技术, 2018, 38(06): 1-7.
[51] Zhang Y, Su Y, Peng J, et al. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride[J]. J Membr Sci, 2013, 429: 235-242.
[52] Seman M A, Khayet M, Hilal N. Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation[J]. Desalination, 2011, 273(1): 36-47.
[53] Liu M, Zheng Y, Shuai S, et al. Thin-film composite membrane formed by interfacial polymerization of polyvinylamine (PVAm) and trimesoyl chloride (TMC) for nanofiltration[J]. Desalination, 2012, 288: 98-107.
[54] Akbari A, Aliyarizadeh E, Mojallali Rostami S M, et al. Novel sulfonated polyamide thin-film composite nanofiltration membranes with improved water flux and anti-fouling properties[J]. Desalination, 2016, 377: 11-22.
[55] Li Y, Su Y, Dong Y, et al. Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers[J]. Desalination, 2014, 333(1): 59-65.
[56] Wei X, Kong X, Yang J, et al. Structure influence of hyperbranched polyester on structure and properties of synthesized nanofiltration membranes[J]. J Membr Sci, 2013, 440: 67-76.
[57] Zhou C, Shi Y, Sun C, et al. Thin-film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration[J]. J Membr Sci, 2014, 471: 381-391.
[58] Ma T Y, Su Y L, Li Y F, et al. Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer[J]. J Membr Sci, 2016, 503: 101-109.
[59] Fan L, Zhang Q, Yang Z, et al. Improving permeation and antifouling performance of polyamide nanofiltration membranes through the incorporation of arginine[J]. ACS Appl Mater Inter, 2017, 9(15): 13577-13586.
[60] Cheng J, Zhang Z Q, Shi W X, et al. A novel polyester composite nanofiltration membrane prepared by interfacial polymerization catalysed by 4-dimethylaminopyridine: Enhanced the water permeability and anti-fouling ability[J]. Polymer, 2018, 153: 24-32.
[61] Cao X L, Yan Y N, Zhou F Y, et al. Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater[J]. J Membr Sci, 2020, 595: 117476.
[62] Mansourpanah Y, Madaeni S S, Rahimpour A. Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance[J]. J Membr Sci, 2009, 343(1): 219-228.
[63] Zhang H L, Liu B H, Yang M, et al. Sulfaguanidine nanofiltration active layer towards anti-adhesive and antimicrobial attributes for desalination and dye removal[J]. RSC Adv, 2019, 9(36): 20715-20727.
[64] Fan X, Dong Y, Su Y, et al. Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process[J]. J Membr Sci, 2014, 452: 90-96.
[65] Jung I K, Gurav J L, Ha T J, et al. The properties of silica aerogels hybridized with SiO2 nanoparticles by ambient pressure drying[J]. Ceram Int, 2012, 38: S105-S108.
[66] Ji Y, Qian W, Yu Y, et al. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chinese J Chem Eng, 2017, 25(11): 1639-1652.
[67] Ma X K, Lee N H, Oh H J, et al. Preparation and characterization of silica/polyamide-imide nanocomposite thin films[J]. Nanoscale Res Lett, 2010, 5(11): 1846.
[68] Hu D, Xu Z-L, Chen C. Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization[J]. Desalination, 2012, 301: 75-81.
[69] Bai X, Zhang Y, Wang H, et al. Study on the modification of positively charged composite nanofiltration membrane by TiO2 nanoparticles[J]. Desalination, 2013, 313: 57-65.
[70] 刘宏伟, 林久养, 叶文媛. 基于纳米粒子改性高分子膜提高抗污染性能的研究进展[J]. 膜科学与技术, 2019, 39(05): 143-151.
[71] Ji Y L, Qian W J, Yu Y W, et al. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chinese J Chem Eng, 2017, 25(11): 1639-1652.
[72] Zhang H, Li B, Pan J, et al. Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt[J]. J Membr Sci, 2017, 539: 128-137.
[73] Zhu J, Qin L, Uliana A, et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration[J]. ACS Appl Mater Inter, 2017, 9(2): 1975-1986.
[74] Xu Y, Gao X, Wang Q, et al. Highly stable MIL-101 (Cr) doped water permeable thin film nanocomposite membranes for water treatment[J]. RSC Adv, 2016, 6(86): 82669-82675.
[75] Wang L, Fang M, Liu J, et al. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water[J]. RSC Adv, 2015, 5(63): 50942-50954.
[76] Wu M, Ma T, Su Y, et al. Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property[J]. J Membr Sci, 2017, 544: 79-87.
[77] Bai L, Liu Y, Ding A, et al. Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal[J]. Chem Eng J, 2019, 358: 1519-1528.
[78] Qi Y, Zhu L, Shen X, et al. Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes[J]. Sep Purif Technol, 2019, 222: 117-124.
[79] Liu M H, Chen Q, Lu K, et al. High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane[J]. Sep Purif Technol, 2017, 173: 135-143.
[80] Zhang Q, Fan L, Yang Z, et al. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles[J]. Appl Surf Sci, 2017, 410: 494-504.
[81] Chen L, Moon J H, Ma X, et al. High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification[J]. Carbon, 2018, 130: 487-494.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号