层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展
作者:刘露月,吕荥宾,刘壮,汪伟,巨晓洁,谢锐,褚良银
单位: 四川大学化学工程学院,四川 成都 610065
关键词: 石墨烯膜;层间距;稳定性;分离膜
出版年,卷(期):页码: 2020,40(1):228-239

摘要:
层层堆叠的石墨烯分离膜,由于具有独特的物理化学性质和可调的二维层状结构等特性,能实现不同物质的分离,在脱盐、水处理、离子筛分、气体分离等领域倍受青睐。本文综述了近年来石墨烯膜在分离领域中研究新进展,简要概述了石墨烯膜的制备方法,重点介绍了基于还原法、分子/离子交联法等来提高石墨烯膜在水溶液中的稳定性以及对其层间距进行精确调控的研究现状,最后对石墨烯膜未来的发展方向进行展望,为可控构筑稳定高效分离的石墨烯分离膜提供参考。
Graphene-based membranes with laminar structures exhibit outstanding performances in the separation field due to their unique physicochemical properties and tunable interlayer spacing. Hence, they are widely used in desalination, water treatment, ion sieving or gas separation and so on. The recent developments of graphene-based membranes with laminar structures are reviewed. The fabrication approaches of graphene-based membranes are briefly introduced. Besides, the stability improvements of graphene-based membranes in aqueous environment and controllable regulation of interlayer-spacing based on reduction methods, molecular or ionic cross-linking methods are highlighted, which are of great significance to the researches and applications of laminar graphene-based membranes with stability and high-efficient separation for long-term use in future.
第一作者简介:刘露月(1993-),女,四川成都人,博士研究生,研究方向为新型智能材料。 *通讯作者,E-mail: chuly@scu.edu.cn.

参考文献:
[1]布多, 扎西达娃. 膜分离技术在水质处理净化领域的应用[J]. 西藏大学学报(汉文版), 2005, 20(3):89-91.
[2]黄文富, 覃仲欣, 马华菊,等. 膜分离技术及其在水处理中的应用[J]. 广州化工, 2015, (21):24-26.
[3]Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067):442-444.
[4]Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356 (6343): eaab0530.
[5]Liu G, Jin W, Xu N. Graphene-based membranes[J]. Chem Soc Rev, 2015, 44(15): 5016-5030.
[6]Liu Z, Wang W, Ju X, et al. Graphene-based membranes for molecular and ionic separations in aqueous environments[J]. Chin J Chem Eng, 2017, 25(11): 1598-1605.
[7]刘壮, 汪伟, 巨晓洁,等. 具有限域传质效应的碳基分离膜——从碳纳米管膜到石墨烯膜[J]. 化工学报, 2018, (1):166-174.
[8]Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nat Nanotech, 2017, 12(6): 546-550.
[9]Liu H, Wang H, Zhang X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification[J]. Adv Mater, 2015, 27(2): 249-254.
[10]Yang E, Kim C M, Song J, et al. Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine[J]. Carbon, 2017, 117: 293-300.
[11]Yang E, Ham M H, Park H B, et al. Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer[J]. J Membr Sci, 2018, 547: 73-79.
[12]Huang L, Chen J, Gao T, et al. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration[J]. Adv Mater, 2016, 28(39):8669-8674.
[13]Huang L, Li Y, Zhou Q, et al. Graphene oxide membranes with tunable semipermeability in organic solvents[J]. Adv Mater, 2015, 27(25): 3797-3802.
[14]Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environ Sci Technol, 2013, 47(8): 3715-3723.
[15]Thebo K H, Qian X, Zhang Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nat Commun, 2018, 9(1): 1486-1493.
[16]Nam Y T, Choi J, Kang K M, et al. Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding[J]. ACS Appl Mater Interfaces, 2016, 8(40): 27376-27382.
[17]Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification[J]. Adv?Funct?Mater, 2013, 23(29): 3693-3700.
[18]Huang H, Mao Y, Ying Y, et al. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chem.?Commun, 2013, 49(53): 5963-5965.
[19]Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754.
[20]Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383.
[21]Jia Z, Wang Y, Shi W, et al. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation[J]. J Membr Sci, 2016, 520: 139-144.
[22]Sun P, Zhu M, Wang K, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano, 2012, 7(1): 428-437.
[23]Huang K, Liu G, Shen J, et al. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates[J]. Adv?Funct?Mater, 2015, 25(36): 5809-5815.
[24]Kim H W, Yoon H W, Yoon S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154): 91-95.
[25]Shen J, Liu G, Huang K, et al. Membranes with fast and selective gas‐transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angew Chem, 2015, 127(2): 588-592.
[26]Qi B, He X, Zeng G, et al. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes[J]. Nat Commun, 2017, 8(1): 825-834.
[27]Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. J Membr Sci, 2015, 477: 93-100.
[28]Zhao C, Xing L, Xiang J, et al. Formation of uniform reduced graphene oxide films on modified PET substrates using drop-casting method[J]. Particuology, 2014, 17: 66-73.
[29]Zhang Y, Shen Q, Hou J, et al. Shear-aligned graphene oxide laminate/Pebax ultrathin composite hollow fiber membranes using a facile dip-coating approach[J]. J Mater Chem A, 2017, 5(17): 7732-7737.
[30]Lue S J, Pai Y L, Shih C M, et al. Novel bilayer well-aligned Nafion/graphene oxide composite membranes prepared using spin coating method for direct liquid fuel cells[J]. J Membr Sci, 2015, 493: 212-223.
[31]Pham V H, Cuong T V, Hur S H, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
[32]Akbari A, Sheath P, Martin S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nat Commun, 2016, 7: 10891-10902.
[33]Zhao X, Zhang Q, Hao Y, et al. Alternate multilayer films of poly (vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly[J]. Macromolecules, 2010, 43(22): 9411-9416.
[34]Nan Q, Li P, Cao B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination[J]. Appl Surf Sci, 2016, 387: 521-528.
[35]Putz K W, Compton O C, Segar C, et al. Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites[J]. Acs Nano, 2011, 5(8): 6601-6609.
[36]Yang X, Zhu J, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high‐performance supercapacitors[J]. Adv Mater, 2011, 23(25): 2833-2838.
[37]Cote L J, Kim J, Zhang Z, et al. Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties[J]. Soft Matter, 2010, 6(24): 6096-6101.
[38]Xi Y H, Liu Z, Liao Q C, et al. Effect of oxidized-group-supported lamellar distance on stability of graphene-based membranes in aqueous solutions[J]. Ind Eng Chem Res, 2018, 57(29): 9439-9447.
[39]Xi Y H, Hu J Q, Liu Z, et al. Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing[J]. ACS Appl Mater Interfaces, 2016, 8(24): 15557-15566.
[40]Su Y, Kravets V G, Wong S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nat Commun, 2014, 5: 4843-4847
[41]Sun S, Wang C, Chen M, et al. The mechanism for the stability of graphene oxide membranes in a sodium sulfate solution[J]. Chem Phys Lett, 2013, 561: 166-169.
[42]Mao S, Pu H, Chen J. Graphene oxide and its reduction: modeling and experimental progress[J]. Rsc Adv, 2012, 2(7): 2643-2662.
[43]Zhang P, Gong J L, Zeng G M, et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal[J]. Chem Eng J, 2017, 322: 657-666.
[44]Gao Y, Liu L Q, Zu S Z, et al. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers[J]. ACS Nano, 2011, 5(3): 2134-2141.
[45]Park S, Dikin D A, Nguyen S B T, et al. Graphene oxide sheets chemically cross-linked by polyallylamine[J]. J Phys Chem C, 2009, 113(36): 15801-15804.
[46]Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3): 572-578.
[47]Yeh C N, Raidongia K, Shao J, et al. On the origin of the stability of graphene oxide membranes in water[J]. Nat Chem, 2015, 7(2): 166-170.
[48]Liu T, Yang B, Graham N, et al. Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment[J]. J Membr Sci, 2017, 542: 31-40.
[49]Sun P, Zheng F, Zhu M, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation? π interactions[J]. ACS Nano, 2014, 8(1): 850-859.
[50]Sun P, Liu H, Wang K, et al. Selective ion transport through functionalized graphene membranes based on delicate ion–graphene interactions[J]. J Phys Chem C, 2014, 118(33): 19396-19401.
[51]Hung W S, Tsou C H, De Guzman M, et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing[J]. Chem Mater, 2014, 26(9): 2983-2990.
[52]Huang H H, Joshi R K, De Silva K K H, et al. Fabrication of reduced graphene oxide membranes for water desalination[J]. J Membr Sci, 2019, 572: 12-19.
[53]Xi Y H, Liu Z, Ji J, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. J Membr Sci, 2018, 550: 208-218.
[54]Amadei C A, Montessori A, Kadow J P, et al. Role of oxygen functionalities in graphene oxide architectural laminate subnanometer spacing and water transport[J]. Environ Sci Technol, 2017, 51(8): 4280-4288.
[55]Zhang Q, Qian X, Thebo K H, et al. Controlling reduction degree of graphene oxide membranes for improved water permeance[J]. Sci Bull, 2018, 63(12): 788-794.
[56]Chen J, Li Y, Huang L, et al. Size Fractionation of Graphene Oxide Sheets via Filtration through Track‐Etched Membranes[J]. Adv Mater, 2015, 27(24): 3654-3660.
[57]Xu C, Cui A, Xu Y, et al. Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification[J]. Carbon, 2013, 62: 465-471.
[58]Huang H, Song Z, Wei N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes[J]. Nat Commun, 2013, 4: 2979-2987.
[59]Goh K, Jiang W, Karahan H E, et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability[J]. Adv?Funct?Mater, 2015, 25(47): 7348-7359.
[60]Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotech, 2008, 3(2): 101-105.
[61]An Z, Compton O C, Putz K W, et al. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films[J]. Adv Mater, 2011, 23(33): 3842-3846.
[62]Qiu L, Zhang X, Yang W, et al. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration[J]. Chem Commun, 2011, 47(20): 5810-5812.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号