两亲聚氯乙烯及其膜材料研究进展
作者:方立峰,王纳川,孙创超,周名勇,朱宝库
单位: 浙江大学高分子科学与工程学系,教育部膜与水处理工程研究中心,浙江省新型吸附分离材料与应用技术重点实验室,杭州 310027
关键词: 聚氯乙烯、两亲高分子、分离膜、结构、功能化
出版年,卷(期):页码: 2020,40(1):240-249

摘要:
聚氯乙烯(PVC)具有价格低廉,优良的耐酸碱性、耐化学腐蚀性和阻燃性等优点,是一种重要的分离膜材料。针对PVC膜材料在使用过程中容易出现膜污染和渗透效率低等问题,亟需对PVC材料进行改性或重新设计。两亲高分子是同时含有疏水链段和亲水链段的高分子,能同时提供材料力学性能和功能性,能有效实现功能高分子的“结构与功能统一”。PVC材料的两亲化是实现PVC材料功能化和PVC分离膜高性能化的重要手段。本综述主要涉及两亲PVC的制备方法以及两亲PVC分离膜的研究进展。
Polyvinyl chloride (PVC) is one of the most important membrane materials, due to its low cost, stiffness, excellent resistance towards acid, base and solvent. However, PVC membrane have some disadvantages, such as the high fouling propensity, low permeability, etc., thus, modification or even redesign of PVC material is highly desired. Amphiphilic copolymers contain both hydrophobic and hydrophilic segments, which provide the materials with both mechanical strength and functions. Amphiphilic PVC is critical for the functionalization of PVC materials and to fabricate high-performance PVC membranes. This review mainly involves progress in amphiphilic PVC and the structures and properties of amphiphilic PVC based membranes.
第一作者简介:方立峰(1987-),男,浙江杭州人,博士后,研究方向:膜用高分子材料设计与制备及其分离膜的结构与性能,E-mail: fanglf@zju.edu.cn 通讯作者:朱宝库(1967-),男,河南开封人,教授,研究方向:高分子材料设计与制备及其分离膜,E-mail:zhubk@zju.edu.cn

参考文献:
[1] 威尔克斯, 萨默斯, 丹尼尔斯. 聚氯乙烯手册[M]// 北京: 化学工业出版社, 2008.
[2] Fang, L-F, Zhu, B-K, Zhu, L-P, et al., Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly(ethylene glycol) blend membranes formed in different coagulation media[J]. J. Membr. Sci., 2017, 524: 235-244.
[3] Fang, L-F, Jeon, S, Kakihana, Y, et al., Improved antifouling properties of polyvinyl chloride blend membranes by novel phosphate based-zwitterionic polymer additive[J]. J. Membr. Sci., 2017, 528: 326-335.
[4] Fan, X, Su, Y, Zhao, X, et al., Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal[J]. J. Membr. Sci., 2014, 464: 100-109.
[5] Moulay, S, Chemical modification of poly (vinyl chloride)-Still on the run[J]. Prog. Polym. Sci., 2010, 35: 303-331.
[6] Kameda, T, Ono, M, Grause, G, et al., Chemical modification of poly(vinyl chloride) by nucleophilic substitution[J]. Polym. Degrad. Stabil., 2009, 94: 107-112.
[7] Bicak, N, Sherrington, D C, Bulbul, H, Vinylamine polymer via chemical modification of PVC[J]. Eur. Polym. J., 2001, 37: 801-805.
[8] Braun, D, B?hringer, B, Ivan, B, et al., Structural defects in poly (vinyl chloride)-V. Thermal and photodegradation of copolymers of vinyl chloride with various acetylene derivatives[J]. Eur. Polym. J., 1986, 22: 299-304.
[9] Bicak, N, Karagoz, B, Emre, D, Atom transfer graft copolymerization of 2-ethyl hexylacrylate from labile chlorines of poly (vinyl chloride) in an aqueous suspension[J]. J. Polym. Sci., Part A: Polym. Chem., 2006, 44: 1900-1907.
[10] Bicak, N, Ozlem, M, Graft copolymerization of butyl acrylate and 2-ethyl hexyl acrylate from labile chlorines of poly (vinyl chloride) by atom transfer radical polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 2003, 41: 3457-3462.
[11] Wu, Q, Xie, W, Wu, H, et al., Effect of volatile solvent and evaporation time on formation and performance of PVC/PVC-g-PEGMA blended membranes[J]. RSC Adv., 2019, 9: 34486-34495.
[12] Ahn, S H, Park, J T, Kim, J H, et al., Nanocomposite membranes consisting of poly(vinyl chloride) graft copolymer and surface-modified silica nanoparticles[J]. Macromolecular Research, 2011, 19: 1195.
[13] 王建宇, 两亲性共聚物的分子设计、合成及其共混改性疏水聚合物多孔膜的研究[D]. 杭州: 浙江大学, 2008.
[14] Koh, J H, Kang, S W, Park, J T, et al., Synthesis of silver halide nanocomposites templated by amphiphilic graft copolymer and their use as olefin carrier for facilitated transport membranes[J]. J. Membr. Sci., 2009, 339: 49-56.
[15] Patel, M, Patel, R, Chi, W S, et al., Antibacterial behaviour of quaternized poly(vinyl chloride)-g-poly(4-vinyl pyridine) graft copolymers[J]. Chin. J. Polym. Sci., 2015, 33: 265-274.
[16] Lee, W-F, Lai, C-C, Studies on graft copolymerization of 2-hydroxyethyl methacrylate onto poly(vinyl chloride)[J]. J. Appl. Polym. Sci., 1994, 51: 2175-2186.
[17] Fang, L-F, Matsuyama, H, Zhu, B-K, et al., Development of antifouling poly(vinyl chloride) blend membranes by atom transfer radical polymerization[J]. J. Appl. Polym. Sci., 2018, 135: 45832.
[18] Fang, L-F, Zhou, M-Y, Cheng, L, et al., Positively charged nanofiltration membrane based on cross-linked polyvinyl chloride copolymer[J]. J. Membr. Sci., 2018, 572: 28-37.
[19] Fang, L-F, Wang, N-C, Zhou, M-Y, et al., Poly (N, N-dimethylaminoethyl methacrylate) grafted poly (vinyl chloride) s synthesized via ATRP process and their membranes for dye separation[J]. Chin. J. Polym. Sci., 2015, 33: 1491-1502.
[20] Choi, J K, Kim, Y W, Koh, J H, et al., Proton conducting membranes based on poly(vinyl chloride) graft copolymer electrolytes[J]. Polym. Adv. Technol., 2008, 19: 915-921.
[21] Fang, L-F, Zhou, M-Y, Wang, N-C, et al., Improving the antifouling property of poly(vinyl chloride) membranes by poly(vinyl chloride)-g-poly(methacrylic acid) as the additive[J]. J. Appl. Polym. Sci., 2015, 132: 42745-42755.
[22] Burkhart, R D, Zutty, N L, Copolymerization studies. III. Reactivity ratios of model ethylene copolymerizations and their use in Q–e calculations[J]. Journal of Polymer Science Part A: General Papers, 1963, 1: 1137-1145.
[23] Ravey, M, Waterman, J, Shorr, L, et al., Vinyl chloride-propylene copolymerization[J]. J. Polym. Sci.: Polym. Chem. Ed., 1976, 14: 1609-1616.
[24] Teyssie, P H, Smets, G, Polymers and group interactions. II. Friedel‐Crafts reactions on polyvinyl chloride, a route to poly‐1, 3‐methyleneindans1[J]. Journal of Polymer Science, 1956, 20: 351-369.
[25] Rajabzadeh, S, Sano, R, Ishigami, T, et al., Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties[J]. Appl. Surf. Sci., 2015, 324: 718-724.
[26] Sun, C-C, Zhou, M-Y, Wang, N-C, et al., An effective approach towards endowing membranes with tunable charge characteristics and large nanopores[J]. Sep. Purif. Technol., 2019, 210: 159-166.
[27] Ji, J, Feng, L, Shen, J, et al., Preparation of albumin preferential surfaces on poly(vinyl chloride) membranes via surface self-segregation[J]. Journal of Biomedical Materials Research, 2002, 61: 252-259.
[28] Zhou, Z, Rajabzadeh, S, Rajjak Shaikh, A, et al., Preparation and characterization of antifouling poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate) membranes[J]. J. Membr. Sci., 2016, 498: 414-422.
[29] Wang, N, Wang, J, Zhang, P, et al., Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12: 262-272.
[30] Wang, N-C, Fang, L-F, Wang, J, et al., pH-dependent property of carboxyl-based ultrafiltration membranes fabricated from poly(vinyl chloride-r-acrylic acid)[J]. J. Appl. Polym. Sci., 2018, 135: 47068.
[31] Zhou, M-Y, Zhang, P, Fang, L-F, et al., A positively charged tight UF membrane and its properties for removing trace metal cations via electrostatic repulsion mechanism[J]. J. Hazard. Mater., 2019, 373: 168-175.
[32] Wang, S-Y, Fang, L-F, Cheng, L, et al., Novel ultrafiltration membranes with excellent antifouling properties and chlorine resistance using a poly(vinyl chloride)-based copolymer[J]. J. Membr. Sci., 2018, 549: 101-110.
[33] Wang, S-Y, Fang, L-F, Cheng, L, et al., Improved antifouling properties of membranes by simple introduction of zwitterionic copolymers via electrostatic adsorption[J]. J. Membr. Sci., 2018, 564: 672-681.
[34] Landler, Y, Lebel, P, Greffage sur polychlorure de vinyle par préozonisation[J]. Journal of Polymer Science, 1960, 48: 477-489.
[35] Shmakova, N A, Feldman, V I, Sukhov, F F, IR spectroscopic study of chemical transformations upon irradiation of the poly (vinyl chloride)–triallyl cyanurate system[J]. High Energy Chemistry, 2001, 35: 224-228.
[36] Liu, F, Zhu, B-K, Xu, Y-Y, Preparation and characterization of poly(vinyl chloride)-graft-acrylic acid membrane by electron beam[J]. J. Appl. Polym. Sci., 2007, 105: 291-296.
[37] Shaikh, A R, Rajabzadeh, S, Matsuo, R, et al., Hydration effects and antifouling properties of poly(vinyl chloride-co-PEGMA) membranes studied using molecular dynamics simulations[J]. Appl. Surf. Sci., 2016, 369: 241-250.
[38] Zhou, Z, Rajabzadeh, S, Shaikh, A R, et al., Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane[J]. J. Membr. Sci., 2016, 514: 537-546.
[39] Zhou, Z, Rajabzadeh, S, Fang, L, et al., Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution[J]. Mater. Sci. Eng., C., 2017, 77: 662-671.
[40] Zhou, Z, Fang, L-F, Wang, S-Y, et al., Improving bonding strength between a hydrophilic coating layer and poly(ethylene terephthalate) braid for preparing mechanically stable braid-reinforced hollow fiber membranes[J]. J. Appl. Polym. Sci., 2018, 135: 46104.
[41] Wu, H, Li, T, Liu, B, et al., Blended PVC/PVC-g-PEGMA ultrafiltration membranes with enhanced performance and antifouling properties[J]. Appl. Surf. Sci., 2018, 455: 987-996.
[42] Xie, W, Li, T, Chen, C, et al., Using the Green Solvent Dimethyl Sulfoxide To Replace Traditional Solvents Partly and Fabricating PVC/PVC-g-PEGMA Blended Ultrafiltration Membranes with High Permeability and Rejection[J]. Ind. Eng. Chem. Res., 2019, 58: 6413-6423.
[43] Shao, X-S, Li, J-H, Zhou, Q, et al., Amphiphilic poly(vinyl chloride)-g-poly[poly(ethylene glycol) methylether methacrylate] copolymer for the surface hydrophilicity modification of poly(vinylidene fluoride) membrane[J]. J. Appl. Polym. Sci., 2013, 129: 2472-2478.
[44] Ahn, S H, Seo, J A, Kim, J H, et al., Synthesis and gas permeation properties of amphiphilic graft copolymer membranes[J]. J. Membr. Sci., 2009, 345: 128-133.
[45] Ahn, S H, Kim, S J, Roh, D K, et al., Controlling gas permeability of a graft copolymer membrane using solvent vapor treatment[J]. Macromolecular Research, 2014, 22: 160-164.
[46] Chi, W S, Kim, S J, Lee, S-J, et al., Enhanced Performance of Mixed-Matrix Membranes through a Graft Copolymer-Directed Interface and Interaction Tuning Approach[J]. ChemSusChem, 2015, 8: 650-658.
[47] Patel, R, Chi, W S, Ahn, S H, et al., Synthesis of poly(vinyl chloride)-g-poly(3-sulfopropyl methacrylate) graft copolymers and their use in pressure retarded osmosis (PRO) membranes[J]. Chem. Eng. J., 2014, 247: 1-8.
[48] Zhou, M-Y, Fang, L-F, Sun, C-C, et al., Pore size tailoring from ultrafiltration to nanofiltration with PVC-g-PDMA via rapid immersion thermal annealing[J]. J. Membr. Sci., 2018, 572: 401-409.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号