环境响应型智能开关膜的应用研究进展
作者:秦佳旺,付国保,谢锐,汪伟,巨晓洁,刘壮,褚良银
单位: 四川大学 化学工程学院,成都 610065
关键词: 环境响应型;智能开关膜;防污材料;物质分离;物质检测;控制释放;反应催化
出版年,卷(期):页码: 2020,40(1):294-302

摘要:
作为一种受生物细胞膜启发而人工合成的新型功能膜,环境响应型智能膜可在环境中的物理/化学刺激发生变化时,基于膜表面和膜孔内的智能高分子链的环境刺激响应特性,改变智能膜表面的物理化学特性甚至膜微观结构,最终自主调节膜的选择性与渗透性。由于兼具膜基材的良好机械强度和新的环境刺激响应性能,智能膜比传统分离膜具有更高效、广阔的应用前景。综述了近年来环境响应型智能开关膜应用于抗污染或自清洁、物质分离、物质检测、控制释放和反应催化等领域的研究现状,着重介绍了它们应用在不同领域时的作用机理与典型实例。
As a new type of artificially synthesized functional membrane inspired by biological cell membranes, the environmentally responsive smart membranes can change its surface physical and chemical properties and even the microstructure when the physical/chemical stimuli in the environment changes, and as a result, they have self-regulated selectivity and permeability. It is attributed to the environmental stimuli-responsive characteristics of the intelligent polymer chains on the membrane surface and inside the membrane pores. Due to both the satisfactory mechanical property of the membrane substrate and the environmental stimuli-responsive performance newly added, the smart membranes have more efficient and broad application prospects than traditional membranes. The current progress in the broad application fields of environmental responsive smart gating membrane such as anti-fouling or self-cleaning, substance separation and detection, controlled release and reaction catalysis is reviewed. The mechanism and typical examples of the applications of smart gating membranes in different fields are emphasized.
第一作者简介:秦佳旺(1996-),男,辽宁人,硕士研究生,智能膜材料与膜过程,E-mail:jwqin@stu.scu.edu.cn *通讯作者,E-mail:xierui@scu.edu.cn

参考文献:
[1] Chu L Y. Smart Membranes[M] London: The Royal Society of Chemistry, 2019: 1-16.
[2] Zhu L J, Song H M, Li C, et al. Surface wormlike morphology control of polysulfone/poly(N-isopropylacrylamide) membranes by tuning the two-stage phase separation and their thermo-responsive permselectivity[J]. J Membr Sci, 2018, 555: 290-298.
[3] Li X Y, Xie R, Zhang C, et al. Effects of hydrophilicity of blended submicrogels on the microstructure and performance of thermo-responsive membranes[J]. J Membr Sci, 2019, 584: 202-215.
[4] Li D, Niu X, Yang S, et al. Thermo-responsive polysulfone membranes with good anti-fouling property modified by grafting random copolymers via surface-initiated eATRP[J]. Sep Purif Technol, 2018, 206: 166-176.
[5] Fan X X, Xie R, Zhao Q, et al. Dual pH-responsive smart gating membranes[J]. J Membr Sci, 2018, 555: 20-29.
[6] He Y, Chen X, Bi S, et al. Conferring pH-sensitivity on poly(vinylidene fluoride) membrane by poly(acrylic acid-co-butyl acrylate) microgels[J]. React Funct Polym, 2014, 74: 58-66.
[7] Xu R Z, Wang J T, Chen D D, et al. Preparation of pH-responsive asymmetric polysulfone ultrafiltration membranes with enhanced anti-fouling properties and performance by incorporating poly(2-ethyl-2-oxazoline) additive[J]. RSC Adv, 2018, 8(72): 41270-41279.
[8] Xiang T, Luo C D, Wang R, et al. Ionic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization[J]. J Membr Sci, 2015, 476: 234-242.
[9] Kaner P, Hu X, Thomas S W, Ⅲ, et al. Self-cleaning membranes from comb-shaped copolymers with photoresponsive side groups[J]. ACS Appl Mater Interfaces, 2017, 9(15): 13619-13631.
[10] Shi W, Deng J, Qin H, et al. Poly(ether sulfone) membranes with photo-responsive permeability[J]. J Membr Sci, 2014, 455: 357-367.
[11] Baumann L, De Courten D, Wolf M, et al. Light-responsive caffeine transfer through porous polycarbonate[J]. ACS Appl Mater Interfaces, 2013, 5(13): 5894-5897.
[12] 徐莉莉, Emanuelsson E, 王军. 新型电响应型导电聚苯胺智能膜的制备及抗污染性能研究[J]. 膜科学与技术, 2018, 38(3): 55-62.
[13] Himstedt H H, Sengupta A, Qian X H, et al. Magnetically responsive nano filtration membranes for treatment of coal bed methane produced water[J]. J Taiwan Ins Chem Eng, 2019, 94: 97-108.
[14] Lin X, Huang R, Ulbricht M. Novel magneto-responsive membrane for remote control switchable molecular sieving[J]. J Mater Chem B, 2016, 4(5): 867-879.
[15] Yang Q, Himstedt H H, Ulbricht M, et al. Designing magnetic field responsive nanofiltration membranes[J]. J Membr Sci, 2013, 430: 70-78.
[16] Hu J Q, Liu Z, Deng K, et al. A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions[J]. J Membr Sci, 2019, 117345.
[17] Liu Z, Luo F, Ju X J, et al. Positively K+-responsive membranes with functional gates driven by host-guest molecular recognition[J]. Adv Funct Mater, 2012, 22(22): 4742-4750.
[18] Song X L, Xie R, Luo T, et al. Ethanol-responsive characteristics of polyethersulfone composite membranes blended with poly(N-isopropylacrylamide) nanogels[J]. J Appl Polym Sci, 2014, 131(21): 41032.
[19] Yang M, Xie R, Wang J Y, et al. Gating characteristics of thermo-responsive and molecular-recognizable membranes based on poly(N-isopropylacrylamide) and β-cyclodextrin[J]. J Membr Sci, 2010, 355(1-2): 142-150.
[20] Sugawara Y, Tamaki T, Yamaghchi T. Development of an aptamer-functionalized molecular recognition gating membrane targeting a specific protein on the basis of the aggregation phenomena of DNA–PNIPAM[J]. Polymer, 2015, 62: 86-93.
[21] Shi W, Zhang L, Deng J, et al. Redox-responsive polymeric membranes via supermolecular host-guest interactions[J]. J Membr Sci, 2015, 480: 139-152.
[22] 谢锐, 巨晓洁, 汪伟, 等. 智能膜对传质和反应与分离过程的调控[J]. 化工学报, 2015, 66(9): 3279-3286.
[23] Ma W Z, Rajabzadeh S, Shaikh A R, et al. Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes[J]. J Membr Sci, 2016, 514: 429-439.
[24] Zhao J Q, Han H R, Wang Q Q, et al. Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers[J]. React Funct Polym, 2019, 139: 92-101.
[25] 申利国, 陆晓峰, 潘玲, 等. PSS-PDADMAC改性PES微滤膜及膜抗污染性能研究[J]. 膜科学与技术, 2014, 34(6): 96-99.
[26] 李壹竹, 宋伟龙, 李之鹏, 等. 等离子体引发表面两性离子化制备抗污染性PVDF膜[J]. 膜科学与技术, 2018, 38(2): 33-40.
[27] Liu P M, Huang T, Liu P S, et al. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property[J]. J Colloid Interface Sci, 2016, 480: 91-101.
[28] Liu T Y, Chen D D, Feng Y, et al. Enhancing the permeability and anti-fouling properties of a polyamide thin-film composite reverse osmosis membrane via surface grafting of l-lysine[J]. RSC Adv, 2019, 9: 20044-20052
[29] Liu H, Zhao X, Jia N, et al. Engineering of thermo-/pH-responsive membranes with enhanced gating coefficients, reversible behaviors and self-cleaning performance through acetic acid boosted microgel assembly[J]. J Mater Chem A, 2018, 6(25): 11874-11883.
[30] Liu H, Yang S, Liu Y, et al. Fabricating a pH-responsive membrane through interfacial in-situ assembly of microgels for water gating and self-cleaning[J]. J Membr Sci, 2019, 579: 230-239.
[31] Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chem Soc Rev, 2016, 45(21): 5888-5924.
[32] Xiang T, Lu T, Zhao W F, et al. Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties[J]. New J Chem, 2018, 42(7): 5323-5333.
[33] Zhang L N, Ghaffar A, Zhu X Y, et al. Stable graphene-based membrane with pH-responsive gates for advanced molecular separation[J]. Environ Sci Technol, 2019, 53(17): 10398-10407.
[34] Zhu L J, Song H M, Wang G, et al. Dual stimuli-responsive polysulfone membranes with interconnected networks by a vapor-liquid induced phase separation strategy[J]. J Colloid Interface Sci, 2018, 531: 585-592.
[35] Meng T, Xie R, Chen Y C, et al. A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption[J]. J Membr Sci, 2010, 349(1-2): 258-267.
[36] Yang M, Chu L Y, Wang H D, et al. A thermoresponsive membrane for chiral resolution[J]. Adv Funct Mater, 2008, 18(4): 652-663.
[37] Liu Z, Feng L, Ju X J, et al. Gating membranes for water treatment: detection and removal of trace Pb2+ ions based on molecular recognition and polymer phase transition[J]. J. Mater Chem A, 2013, 1:9659–9671
[38] Cai Y, Chen D, Li N, et al. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation[J]. J Membr Sci, 2018, 555: 69-77.
[39] Cheng B, Li Z, Li Q, et al. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation[J]. J Membr Sci, 2017, 534: 1-8.
[40] Li J J, Zhou Y N, Luo Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review[J]. Prog Polym Sci, 2018, 87: 1-33.
[41] Wang Y, Liu Z, Luo F, et al. A novel smart membrane with ion-recognizable nanogels as gates on interconnected pores for simple and rapid detection of trace lead(II) ions in water[J]. J Membr Sci, 2019, 575: 28-37.
[42] 刘壮, 谢锐, 巨晓洁, 等.分子识别响应型智能膜的研究进展[J]. 科学通报, 2015, (27): 2621-2630.
[43] Chu L Y, Li Y, Zhu J H, et al. Control of pore size and permeability of a glucose-responsive gating membrane for insulin delivery[J]. J Control Release, 2004, 97(1): 43-53.
[44] Shen Y, Xu Z T, Li L L, et al. Fabrication of glucose-responsive and biodegradable copolymer membrane for controlled release of insulin at physiological pH[J]. New J Chem, 2019, 43(20): 7822-7830.
[45] Su Y, Dang J, Zhang H, et al. Supramolecular host-guest interaction-enhanced adjustable drug release based on β-cyclodextrin-functionalized thermoresponsive porous polymer films[J]. Langmuir, 2017, 33(30): 7393-7402.
[46] Wang W, Wang K, He J J, et al. A synergistic strategy for nanoparticle/nanofiber composites towards p-Nitrophenol catalytic hydrogenation[J]. Chem Res Chin Univ, 2015, 31(6): 1012-1017.
[47] Xie R, Luo F, Zhang L, et al. A Novel thermoresponsive catalytic membrane with multiscale pores prepared via vapor-induced phase separation[J]. Small, 2018, 14(18):1703650.
[48] Qiao J, Jiang J, Liu L, et al. Enzyme reactor based on reversible pH-controlled catalytic polymer porous membrane[J]. ACS Appl Mater Interfaces, 2019, 11(16): 15133-15140.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号