用于有机溶剂体系分离的氧化石墨烯基复合膜的构筑
作者:汪林,纪树兰,王乃鑫,张文海,安全福,王晓琳
单位: 1北京工业大学 环境与能源工程学院,北京 100124;2清华大学 化学工程系,北京 100084
关键词: 氧化石墨烯;传质通道;有机溶剂纳滤;渗透汽化
出版年,卷(期):页码: 2020,40(1):352-359

摘要:
膜技术在有机溶剂体系分离领域具有广阔的应用前景,但其在应用过程中选择性与渗透性博弈的Trade-off现象是限制其发展的主要瓶颈。在保证分离层致密完整的前提下,构筑高效稳定的选择性传质通道为解决该问题提供了新策略,其中具有二维片层结构、丰富的功能化基团及良好机械强度的氧化石墨烯(GO)已成为极具潜力的构筑基元。通过对GO纳米片的功能化改性及对成膜组装过程的优化调控以构筑有机小分子快速传质的渗透通道,可实现GO基复合膜在有机溶剂纳滤和优先透有机物渗透汽化领域的应用。文中总结了近年来课题组在这一领域的研究进展。
Membrane technology showed great potentials in the area of organic solvent system separating. However, most membranes have been hindered from further applications due to the trade-off effects between permeability and selectivity. Thus, membranes with efficient and stable mass transfer channels are urgently required. Graphene oxide (GO) have emerged as desirable materials for membrane preparation due to their one-atomic thickness, unique two-dimensional structure, abundant functional groups, and excellent mechanical properties. Improving the affinity to organics by modifying the GO nanosheets, and constructing stable mass transfer channel via suitable assembly methods were deemed pivotal to fabricate a promising membrane for the separation of organic solvent system. These research progress of our group in this field was summarized in this paper.
第一作者简介:汪林(1989-),男,安徽省宣城市人,博士后,主要从事渗透汽化及纳滤方面研究,E-mail:wanglin891208@mail.tsinghua.edu.cn. *通讯作者,E-mail:jshl@bjut.edu.cn; xl-wang@tsinghua.edu.cn

参考文献:
[1]Jiménez-González C, Poechlauer P, Broxterman Q B, et al. Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers[J]. Organic Process Research & Development, 2011, 15(4): 900-911.
[2]周宗尧, 张朔, 王宁, 等. 有机溶剂分离膜技术研究进展[J]. 膜科学与技术, 2018, 38(1): 104-113.
[3]周金盛, 曹曙光. 有机液/有机液渗透汽化分离膜的研究进展[J]. 膜科学与技术, 1998, 18(1): 1-9.
[4]Van der Bruggen B, Luis P. Pervaporation as a tool in chemical engineering: a new era?[J]. Current Opinion in Chemical Engineering, 2014, 4: 47-53.
[5]Marchetti P, Jimenez Solomon M F, Szekely G, et al. Molecular separation with organic solvent nanofiltration: a critical review[J]. Chemical reviews, 2014, 114(21): 10735-10806.
[6]Mi B. Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172): 740-742.
[7]李方, 孟蝶. 氧化石墨烯: 膜科学的机遇与挑战[J]. 膜科学与技术, 2015, 35(6): 106-112.
[8]Wang L, Wang N, Yang H, et al. Enhanced pH and oxidant resistance of polyelectrolyte multilayers via the confinement effect of lamellar graphene oxide nanosheets[J]. Separation and Purification Technology, 2018, 193: 274-282.
[9]Putz K W, Compton O C, Palmeri M J, et al. High‐nanofiller‐content graphene oxide–polymer nanocomposites via vacuum‐assisted self‐assembly[J]. Advanced Functional Materials, 2010, 20(19): 3322-3329.
[10]Liu S, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS nano, 2011, 5(9): 6971-6980.
[11]王进, 赵长伟, 吴珍, 等. 氧化石墨烯/聚哌嗪酰胺复合纳滤膜在染料脱除中的应用研究[J]. 膜科学与技术, 2016, 36(6): 86-94.
[12]Xu Z, Zhang J, Shan M, et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 458: 1-13.
[13]Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical society reviews, 2010, 39(1): 228-240.
[14]Wang N, Ji S, Li J, et al. Poly (vinyl alcohol)–graphene oxide nanohybrid “pore-filling” membrane for pervaporation of toluene/n-heptane mixtures[J]. Journal of membrane science, 2014, 455: 113-120.
[15]Sun P, Ma R, Ma W, et al. Highly selective charge-guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units[J]. NPG Asia Materials, 2016, 8(4): e259.
[16]Wang L, Wang N, Li J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Separation and Purification Technology, 2016, 160: 123-131.
[17]汪林. 氧化石墨烯基致密膜的制备, 分离性能及其稳定性研究[D]. 北京工业大学, 2018.
[18]Zhang W, Han H, Bai H, et al. A highly efficient and visualized method for glycan enrichment by self-assembling pyrene derivative functionalized free graphene oxide[J]. Analytical chemistry, 2013, 85(5): 2703-2709.
[19]Su Q, Pang S, Alijani V, et al. Composites of graphene with large aromatic molecules[J]. Advanced materials, 2009, 21(31): 3191-3195.
[20]Shen H, Wang N, Ma K, et al. Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance[J]. Journal of membrane science, 2017, 527: 43-50.
[21]汪林, 申洪泮, 王乃鑫, et al. SG@GO/PDDA多层膜的制备及其有机溶剂纳滤性能研究[J]. 膜科学与技术, 38(06):52-59+66.
[22]Huang X, Zheng B, Liu Z, et al. Coating two-dimensional nanomaterials with metal–organic frameworks[J]. ACS nano, 2014, 8(8): 8695-8701.
[23]Hu Y, Wei J, Liang Y, et al. Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes[J]. Angewandte Chemie International Edition, 2016, 55(6): 2048-2052.
[24]Yang H, Wang N, Wang L, et al. Vacuum-assisted assembly of ZIF-8@ GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance[J]. Journal of Membrane Science, 2018, 545: 158-166.
[25]Li W, Li J, Wang N, et al. Recovery of bio-butanol from aqueous solution with ZIF-8 modified graphene oxide composite membrane[J]. Journal of Membrane Science, 2019: 117671.
[26]Zhu T, Xu S, Yu F, et al. ZIF-8@ GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery[J]. Journal of Membrane Science, 2019: 117681.
[27]Loh K P, Bao Q, Ang P K, et al. The chemistry of graphene[J]. Journal of Materials Chemistry, 2010, 20(12): 2277-2289.
[28]Zhao J, Zhu Y, He G, et al. Incorporating zwitterionic graphene oxides into sodium alginate membrane for efficient water/alcohol separation[J]. ACS applied materials & interfaces, 2016, 8(3): 2097-2103.
[29]Sun S, Cao Y, Feng J, et al. Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets[J]. Journal of Materials Chemistry, 2010, 20(27): 5605-5607.
[30]Wang L, Wang N, Yang H, et al. Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation[J]. Journal of Membrane Science, 2018, 559: 8-18.
[31]Tang W, Lou H, Li Y, et al. Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions[J]. Journal of membrane science, 2019, 581: 93-104.
[32]Richardson J J, Bj?rnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. science, 2015, 348(6233): aaa2491.
[33]Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of membrane science, 2015, 477: 93-100.
[34]Huang A, Liu Q, Wang N, et al. Bicontinuous zeolitic imidazolate framework ZIF-8@ GO membrane with enhanced hydrogen selectivity[J]. Journal of the American Chemical Society, 2014, 136(42): 14686-14689.
[35]Huang K, Liu G, Shen J, et al. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates[J]. Advanced Functional Materials, 2015, 25(36): 5809-5815.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号