PDA与PEI共沉积和分步沉积方法对纳滤膜性能的影响
作者:苏婉,张文娟,张宇峰
单位: 1 天津城建大学 水质科学与技术天津市重点实验室,天津 300384;2 天津工业大学 省部共建分离膜与膜过程国家重点实验室,天津 300387
关键词: 聚多巴胺;聚乙烯亚胺;共沉积;分步沉积
分类号: TQ051.893
出版年,卷(期):页码: 2020,40(3):14-21

摘要:
本研究通过采用聚多巴胺(PDA)与聚乙烯亚胺(PEI)共沉积和分步沉积两种方法对聚砜(PSf)基膜进行改性,对比两种方法改性后纳滤膜性能的差异。研究中对改性前后膜的接触角、通量、截留率及稳定性进行了测试,并通过SEM、AFM、ATR-FTIR、XPS等方法对改性前后膜表面形貌结构、官能团种类、元素组成等进行表征。结果表明,改性时间为8h时,PDA与PEI分步沉积改性后的膜接触角为49.85°,小于共沉积的68.55°;对MgSO4的截留率为95.2%,高于共沉积改性后的83.0%,但分步沉积对膜通量的影响更大。连续七天的过滤实验表明两种方法改性后的纳滤膜的盐渗透通量和截留率具有长期稳定性。Zeta电位显示两种沉积方法均使膜表面电负性降低。膜表面表征表明两种方法均能使PDA与PEI交联涂层牢牢粘附在PSf基膜上,但两种改性方法的反应机理有所不同:PDA/PEI共沉积更易发生Schiff base反应,而分步沉积法更倾向于发生Michael addition反应。研究结果对于不同功能改性膜的发展提供理论基础,为PSf膜表面改性提供参考依据。
In this study, polydopamine(PDA)and polyethylenimine(PEI)co-deposition and step deposition were used to modify the polysulfone (PSf) membrane, and the performance differences of the modified nanofiltration (NF) membrane were compared. The contact angle, flux, rejection, and stability of the modified membranes were tested. The surface morphology, functional groups and element composition of the modified membranes were characterized by SEM, AFM, ATR-FTIR and XPS, etc. The results showed that after modification for 8 h, the contact angle of PDA and PEI step deposition modified membrane was 49.85°, less than 68.55° of the membrane with PDA/PEI co-deposition. The rejection of MgSO4 was 95.2%, which is higher than 83.0% of the co-deposition, but step deposition had a greater impact on membrane flux. The continuous filtration experiments for seven days showed that the salt permeation flux and rejection rate of the modified NF membranes by the two methods had long-term stability. The Zeta potential showed that both deposition methods caused the membrane surface potential becoming less negative. The characterization of the membranes showed that both methods could make PDA and PEI cross-linked coatings stick firmly to PSf base membrane, but the reaction mechanisms of the two modification methods are different: PDA/PEI co-deposition was more inclined to Schiff base reaction, while step deposition method was more prone to Michael addition reaction. The results provide a theoretical basis for the development of different functional modified membranes and a reference for the surface modification of PSf membranes.

基金项目:
电化学阻抗谱用于纳滤膜表征,天津市教委科研计划项目(2018KJ161);电化学阻抗谱用于膜表征及膜污染在线监测研究,天津城建大学博士科研启动基金资助项目;天津市水质科学与技术重点实验室开放研究基金资助项目,TJKLAST-PT-2018-02

作者简介:
第一作者简介:苏婉(1996-),女,河南平舆人,硕士,主要从事方向为膜材料与膜改性方面的研究,E-mail: 2587103926@qq.com. *通讯作者,E-mail: wenjuanvivian@126.com, zyf9182@163.com

参考文献:
[1] 袁晓彤, 郭东岳, 王暄, 等. 氧化剂高碘酸钠诱发多巴胺自聚合在MBfR膜表面改性中的应用[J]. 膜科学与技术,2017, (05): 36-41.
[2] 冯霞, 夏伟伟, 马潇, 等. 多巴胺仿生修饰PVDF微滤膜的制备及性能[J]. 天津工业大学学报, 2018,37(04): 14-19.
[3] Gao F, Wang J, Zhang H, et al. Aged PVDF and PSF ultrafiltration membranes restored by functional polydopamine for adjustable pore sizes and fouling control[J]. J. Membr. Sci.,2019, 570-571: 156-167.
[4] 杨皓程. 基于聚多巴胺/聚乙烯亚胺共沉积技术的聚合物膜表界面工程[D]. 浙江:浙江大学, 2017.
[5] Chew NGP, Zhao S, Malde C, et al. Superoleophobic surface modification for robust membrane distillation performance[J]. J. Membr. Sci.,2017, 541: 162-173.
[6] Song H, Yu H, Zhu L, et al. Durable hydrophilic surface modification for PTFE hollow fiber membranes[J]. React. Funct. Polym.,2017, 114: 110-117.
[7] 程毅丽, 康国栋, 贾静璇, 等. 聚四氟乙烯中空纤维膜的多巴胺自聚表面改性及性能研究[J]. 高校化学工程学报, 2015,29(05): 1259-1264.
[8] Yang HC, Pi JK, Liao KJ, et al. Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation[J]. ACS. Appl. Mater. Inter.,2014, 6(15): 12566-72.
[9] Yang HC, Liao KJ, Huang H, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. J. Mater. Chem. A.,2014, 2(26): 10225-10230.
[10] Xu Y, Li Z, Su K, et al. Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater[J]. Chem. Eng. J.,2018, 341: 371-382.
[11] Zin G, Wu J, Rezzadori K, et al. Modification of hydrophobic commercial PVDF microfiltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine[J]. Sep. Purif. Technol.,2019, 212: 641-649.
[12] 冯霞,胡俊成,阿拉东. 多巴胺仿生修饰及聚乙烯亚胺二次功能化表面改性超高分子量聚乙烯纤维[J]. 天津工业大学学报,2016, 35(06): 14-19.
[13] Wu MB, Yang HC, Wang JJ, et al. Janus Membranes with Opposing Surface Wettability Enabling Oil-to-Water and Water-to-Oil Emulsification[J]. ACS. Appl. Mater. Inter.,2017, 9(6): 5062-5066.
[14] Li H, Peng L, Luo Y, et al. Enhancement in membrane performances of a commercial polyamide reverse osmosis membrane via surface coating of polydopamine followed by the grafting of polyethylenimine[J]. RSC. Adv.,2015, 5(119): 98566-98575.
[15] Qiu JH, Zhang YW, Zhang YT, et al. Synthesis and antibacterial activity of copper-immobilized membrane comprising grafted poly(4-vinylpyridine) chains[J]. J. Colloid. Interface. Sci.,2011, 354(1): 152-9.
[16] Karkhanechi H,Takagi R,Matsuyama H. Biofouling resistance of reverse osmosis membrane modified with polydopamine[J]. Desalination,2014, 336: 87-96.
[17] Shi H, Xue L, Gao A, et al. Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine[J]. J. Membr. Sci.,2016, 498: 39-47.
[18] Xi Z-Y, Xu Y-Y, Zhu L-P, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)[J]. J. Membr. Sci.,2009, 327(1-2): 244-253.
[19] 周蓉, 任鹏飞, 徐志康. 预处理对聚多巴胺改性聚丙烯微滤膜性能影响研究[J]. 膜科学与技术,2015, (01): 56-63.
[20] 吴晓莉, 王景涛, 张浩勤, 等. HPAN/PEI-PDMS有机溶剂纳滤复合膜的制备与性能[J]. 膜科学与技术,2016, (02): 13-19.
[21] Hong S, Yun SN, Choi S, et al. Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation[J]. Adv. Funct. Mater.,2012, 22(22): 4711-4717.
[22] Jiang J, Zhu L, Zhu L, et al. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone)[J]. ACS. Appl. Mater. Inter.,2013, 5(24): 12895-12904.
[23] Lv Y, Du Y, Chen Z-X, et al. Nanocomposite membranes of polydopamine/electropositive nanoparticles/polyethyleneimine for nanofiltration[J]. J. Membr. Sci.,2018, 545: 99-106.
[24] Wang Z, Guo S, Zhang B, et al. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination[J]. J. Membr. Sci.,2019, 592: 117375.
[25] Jinhong J, Liping Z, Lijing Z, et al. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films[J]. Langmuir,2011, 27(23): 14180-14187.
[26] Thakur VK, Lin MF, Tan EJ, et al. Green aqueous modification of fluoropolymers for energy storage applications[J]. J. Mater. Chem.,2012, 22(13): 5951-5959.
[27] Wang L, Fei F, Yang L, et al. Facile preparation of heparinized polysulfone membrane assisted by polyfopamine/polyethyleneimine co-deposition for simultaneous LDL selectivity and biocompatibility[J]. Appl. Surf. Sci.,2016, 385: 308-317.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号