己二酸调控聚醚砜/磺化聚砜致密超滤膜 结构及染料/盐选择分离性能
作者:杨淑倩,刘晓伟,胡梦洋,崔振宇,何本桥,李建新
单位: 1 天津工业大学分离膜与膜过程国家重点实验室,天津,300387;2 天津工业大学材料科学与工程学院,天津,300387
关键词: 聚醚砜;磺化聚砜;己二酸;致密超滤膜;染料/盐选择性分离
出版年,卷(期):页码: 2020,40(3):28-36

摘要:
本文以聚醚砜(PES)和亲水性磺化聚砜(SPSf)为原料进行共混,以己二酸为致孔剂,采用非溶剂致相分离法(NIPS)制备PES/SPSf致密超滤膜(UF),重点考察铸膜液中己二酸含量(0-13 wt%)对PES/SPSf共混膜结构和性能的影响规律。结果表明,随着铸膜液中己二酸含量增加,铸膜液粘度逐渐增加,膜断面结构逐渐由指状孔转变为海绵体结构。当己二酸添加量为11 wt%以及聚合物浓度31wt%(PES/SPSf=84/16)时,所制备共混膜断面为完全的海绵体结构。该膜切割分子量(MWCO)约为7250 Da,平均孔径约为1.81 nm,纯水通量为144 L m?2 h?1(操作压力0.2 MPa)。共混膜处理刚果红(CR)(696 Da)与Na2SO4混合液时,对刚果红截留保持在100%,Na2SO4截留率 < 25%,显示出优异的染料和盐选择分离性和稳定性。处理靛蓝磺酸钠(IC)(466 Da)/CR/Na2SO4三元体系时,其染料截留率分别为93.1%和100%,同样表现出优异的染料和盐选择分离性和稳定性。
The aim of this study is to fabricate polythersulfone (PES)/sulfonated polysulfone (SPSf) tight ultrafiltration membrane for dye/salt selective separation by non-solvent induced phase separation (NIPS) method using adipic acid as additive. The effect of adipic acid concentration (0-13 wt%) on the morphology and properties of blend membrane was investigated. Results showed that the morphology of resultant membranes with the mass ratio of PES/SPSf=84/16 and polymer concentration of 31 wt% gradually changed from finger-like support layer into full sponge-like structure as an increase of adipic acid concentration to 11 wt% in the casting solution. Simultaneously, the resultant membrane with the molecular weight cut-off of 7250 Da and pore size of 1.81 nm displayed a high permeability and separation performance. The pure water flux was up to 144 L h?1 m?2 under the operating pressure of 0.2 MPa. The rejection for the mixture of Congo red (696 Da) and Na2SO4 was 100% and 25%, respectively, indicating a high selective separation for dye and salt and stability. Similarly, when the membrane was used to treat the mixture of Indigo Carmine (IC) (466 Da)/CR/ Na2SO4, the rejection was 93.1% for IC and 100% for CR. It also exhibited an excellent selective separation performance and operating stability.
第一作者简介:杨淑倩(1993-),女,山东日照人,硕士生,从事聚合物分离膜及染料废水处理研究。 *通讯作者:E-mail:jxli@tiangong.edu.cn

参考文献:
[1] BANAT I M, NIGAM P, SINGH D, et al. Microbial decolorization of textile-dye-containing effluents: A review[J].Biores Technol,1996,58:217-227.
[2] GONG J L, WANG B, ZENG G-M, et al. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent[J]. J. Hazard. Mater,2009, 164:1517-1522.
[3] ZCAN A, YüCEL A, KOPARAL A S, et al. Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium[J]. J. Electroanal. Chem,2008,616:71-78.
[4] ZHOU M, S?RKK? H, SILLANP?? M. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes[J]. Sep. Purif. Technol,2011,78:290-297.
[5] MI Y. Research on removal of azo dye by bioelectrochemical technology[J]. Chin. J. Environ. Eng, 2009,3:1457-1461.
[6] BIN L, QIAN Y, HAOYI C, et al. Enhanced degradation of azo dye alizarin yellow R in a combined process of iron–carbon microelectrolysis and aerobic bio-contact oxidation[J]. Environ. Sci. Pollut. Res, 2012,19:1385-1391.
[7] WEI C, HE Z, LIN L, et al. Negatively charged polyimide nanofiltration membranes with high selectivity and performance stability by optimization of synergistic imidization[J]. J. Membr. Sci, 2018,563: 752-761.
[8] AKBARI A, DESCLAUX S, REMIGY J C, et al. Treatment of textile dye effluents using a new photografted nanofiltration membrane[J].Desalination,2002,149:101-107.
[9] HE Y, GUANG-MING L, HUA W, et al. Experimental study on the rejection of salt and dye with cellulose acetate nanofiltration membrane[J]. J. Taiwan Inst. Chem. Eng,2009,40:289-295.
[10] LIN J, YE W, ZENG H, et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes[J]. J. Membr. Sci,2015,477:183-193.
[11] ZHANG Q, WANG H, ZHANG S, et al. Positively charged nanofiltration membrane based on cardo poly(arylene ether sulfone) with pendant tertiary amine groups[J]. J. Membr. Sci,2011,375:191-197.
[12] LIU C, MAO H, ZHENG J, et al. Tight ultrafiltration membrane: Preparation and characterization of thermally resistant carboxylated cardo poly (arylene ether ketone)s (PAEK-COOH) tight ultrafiltration membrane for dye removal[J]. J. Membr. Sci, 2017,540:136-145.
[13] ZHANG L, CUI Z, HU M, et al. Preparation of PES/SPSf blend ultrafiltration membranes with high performance via H2O-induced gelation phase separation[J]. J. Membr. Sci,2017,540:136-145.
[14] DLAMINI D S, LI J, MAMBA B B. Critical review of montmorillonite/polymer mixed-matrix filtration membranes: Possibilities and challenges[J]. Appl. Clay Sci,2019,168:21-30.
[15] ZHANG Y, KUNMEI S, SCIENCE L Z J J O M. Graphene Oxide Composite Membranes Cross-linked with Urea for Enhanced Desalting Properties[J]. J. Membr. Sci,2018,563: 718-725.
[16] Li X, CUI Z, Li J, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J].Desalination,2015,369:26-36.
[17] QIN P, HONG X, KARIM M N, et al. Preparation of Poly(phthalazinone-ether-sulfone)Sponge-Like UltrafiltrationMembrane[J].Langmuir,2013,29:4167-4175.
[18] ZHU,G-D, YIN, Y-R, YI Z. Organic acids interacting with block copolymers have broadened the window that retains isoporous structures[J]. J. Membr. Sci,2019,582:391-401.
[19] ZHOU C, HOU Z, LU X, et al. Effect of Polyethersulfone Molecular Weight on Structure and Performance of Ultrafiltration Membranes[J]. Ind. Eng. Chem. Res.2010, 49:9988-9997.
[20] LIU H, CHEN Y, ZHANG K, et al. Poly(vinylidene fluoride) hollow fiber membrane for high-efficiency separation of dyes-salts[J]. J. Membr. Sci,2019,578:43-52.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号