聚砜膜的表面亲水改性
作者:徐天玉,李希鹏,张伟,李保安
单位: 1. 天津大学 化工学院化学工程研究所,天津 300350;2. 天津市膜科学与海水淡化重点实验室,天津 300350;3. 化学工程联合国家重点实验室 天津大学,天津 300350;4. 天津化学化工协同创新中心,天津 300350
关键词: 亲水;膜改性;聚砜膜;多巴胺;纳米球状结构
出版年,卷(期):页码: 2020,40(4):41-48

摘要:
本文配置叔丁基过氧化氢(TBHP)-多巴胺(DA)-三羟甲基氨基甲烷(Tris)缓冲液,通过在聚砜膜(PSF)表面沉积聚多巴胺(PDA)来制备亲水纳滤膜。研究了TBHP不同添加量以及不同pH值时改性膜的亲水性能,并利用FTIR、XPS、水油接触角测量仪、SEM、AFM等方法表征改性前后PSF膜表面的元素组成、结构、形貌、亲水性能、稳定性能以及渗透性能。结果表明,PH=8.5,TBHP的添加量为800μL时,PSF膜的水接触角由52°降到13°,油接触角由142°升到165°,得到了亲水疏油改性膜,纯水通量为91.3L/m2· h,相比PSF基膜提高了170.4%,截留率达90.7%,超声震荡后,水接触角仅下降3.1°,表现了良好的稳定性能。
The hydrophilic nanofiltration membrane was successfully prepared by deposing the polydopamine(PDA) group on the surface of the polysulfone(PSF) membrane in tert-butyl hydrogen peroxide(TBHP)-dopamine(DA)-Trisbuffer solution. The wettability of modified membrane with different TBHP content and pH value was investigated, and the elemental composition, structure, morphology, wettability and stability of modified membrane surface of PSF was characterized by FTIR, XPS, water-oil contact angle measuring instrument, SEM, AFM, etc. The results manifested that, when pH=8.5 and the addition of TBHP was 800μL, the water contact angle of the modified PSF decreased from 52°to 13°,the oil contact angle increased from 142°to 165°thereby producing hydrophilicity membrane. What’s more, the pure water flux was increasing by 170.4%, going up to 91.3L/m2· h, and the rejection reached 90.7%. After ultrasonic shock, the water contact angle only decreased by 3.1° , showing good stability.
第一作者简介:徐天玉(1994),女,辽宁省,无,硕士,硕士,疏水膜表面的亲水改性,E-mail:834176360@qq.com 通讯作者,E-mail:libaoan@tju.edu.cn

参考文献:
[1]Zhou D, Zhu L, Fu Y,et al. Development of lower cost seawater desalination processes using nanofiltration technologies — A review[J]. Desalination, 2015, 376:109-116.
[2]Amirilargani M, Sadrzadeh M, Sudholter EJR,et al. Surface modification methods of organic solvent nanofiltration membranes[J]. Chem Eng J, 2016, 289:562-582.
[3]Ali A, Tufa RA, Macedonio F, et al. Membrane technology in renewable-energy-driven desalination[J]. Renew Suatain Energy Rev, 2018, 81:1-21.
[4]魏新浩, 杨座国. 聚砜膜的表面疏水改性[J]. 功能高分子学报, 2015, 4:417-422.
[5]Norhan Nady, Maurice C.R. Franssen,et al. Modification methods for poly(arylsulfone) membranes: A mini-review focusing on surface modification[J]. Desalination, 2011, 275(1):1-9.
[6]Lin J, Tang CY, Huang C, et al. A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes[J]. J Membr Sci, 2016, 501:1-14.
[7]Z. Xue, S. Wang, L. Lin, et al. A novel superhydrophilicand underwatersuperoleophobichydrogel-coated mesh for oil/water separation[J]. AdvMater, 2011, 23:4270–4273.
[8]M. Liu, S. Wang, Z. Wei,et al. Bioinspired design of a superoleophobicand low adhesive water/solid interface[J]. AdvMater, 2009, 21:665–669.
[9]Y. Wang, X. Gong. Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications[J]. JMaterChemA, 2017, 5:3759–3773.
[10]T. Yuan, J. Meng, T. Hao, et al. A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation[J]. ACS ApplMaterInterfaces, 2015, 7:14896–14904.
[11]Xin Wang, Xin Peng, Yajing Zhao, et al. Bio-inspired modifcation of superhydrophilic iPP membrane based on polydopamine and graphene oxide for highly antifouling performance and reusability[J]. Materials Letters, 2019, 255.
[12]Leong S, Razmjou A, Wang K, et al. TiO2 based photocatalytic membranes: A review[J]. J Membr Sci, 2014, 472:187-184.
[13]Y. Liao, M. Tian, R. Wang. A high-performance and robust membrane withswitchable super-wettability for oil/water separation under ultralow pressure[J]. J.Membr. Sci, 2017, 543:123–132.
[14]王芳, 王娟, 赵雅静,等. 热致相分离法制备亲水性聚丙烯中空纤维膜[J]. 膜科学与技术, 2018, 38:68-74.
[15]J. Wang, La Hou, K. Yan, et al. Polydopamine nanocluster decoratedelectrospun nanofibrous membrane for separation of oil/water emulsions[J]. JMembrSci, 2018, 547:156–162.
[16]C. Luo, Q. Liu. Oxidant-induced high-efficient mussel-inspired modification onPVDF membrane with superhydrophilicity and underwater superoleophobicitycharacteristics for oil/water separation[J]. ACS ApplMaterInterfaces, 2017, 9:8297–8307.
[17]Y. Cao, X. Zhang, L. Tao,et al. Mussel-inspired chemistryand Michael addition reaction for efficient oil/water separation[J]. ACS Appl MaterInterfaces, 2013, 5:4438–4442.
[18]F. Ponzio, J. Barthes, J. Bour, et al. Oxidant control of polydopamine surface chemistry in acids: a mechanism-based entry tosuperhydrophilic-superoleophobic coatings[J]. Chem Mater, 2016, 28:4697–4705.
[19]冷云飞. 聚砜膜表面亲水化改性研究[D]. 北京:北京化工大学, 2009.
[20]X. Wang, B. Jin, X. L. In-situ FTIR spectroelectrochemical study of dopamine at aglassy carbon electrode in a neutral solution[J]. Anal Sci, 2002, 18:931–933.
[21]Xipeng Li, Huiting Shan, Min Cao. Mussel-inspired modification of PTFE membranes in a miscible THF-Trisbuffer mixture for oil-in-water emulsions separation[J]. JMembrSci, 2018, 555:237–243.
[22]贺武, 帅韬, 高明阳,等. 聚多巴胺形成的机理及影响因素[J]. 江西化工, 2017, 4:4-10.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号