聚电解质改性PVDF膜及其抗蛋白质污染研究
作者:胡丹,肖维新,王晓琳
单位: 1北京工商大学 轻工科学技术学院,北京 100048
关键词: 聚偏氟乙烯;抗污染;聚电解质;表面接枝
出版年,卷(期):页码: 2020,40(4):62-71

摘要:
为了提高PVDF膜的抗污染性,采用两步表面接枝聚合的方法,利用含有正电荷的季胺单体(2-甲基丙烯酰氧基乙基三甲基氯化铵,DMC)和带负电荷的羧酸单体(2-羧基乙基丙烯酸酯,CAA)对PVDF中空纤维微孔膜的外表面进行亲水改性。首先由PVDF膜的外表面引发甲基丙烯酸羟乙酯(HEMA)的原子自由基聚合(ATRP)反应,引入羟基活性位点,再利用铈离子(Ce4+)引发DMC和CAA在膜表面上发生接枝共聚反应,从而得到聚电解质改性的PVDF中空纤维微孔膜。通过控制接枝反应条件得到高亲水性、高通量和抗蛋白质污染的改性膜。结果表明,聚电解质改性PVDF膜的纯水通量保持较高水平,达到912 L/[m2·h·(0.1MPa)],水接触角在52s时则变为0°,同时具备优异的抗蛋白质污染性能,过滤蛋白质溶液的操作压力上涨率低,膜表面污染物含量少。
To improve the anti-fouling performance of PVDF membranes, a two-step surface grafting polymerization method was used for hydrophilic-modification of the outer surface of PVDF hollow fiber microporous membrane with positively charged quaternary amine monomer (2-methacryloxyethyltrimethylammonium chloride, DMC) and negatively charged carboxylic acid monomer (2-carboxyethyl acrylate, CAA). First, the radical surface polymerization of hydroxyethyl methacrylate (HEMA) was initiated from the outer surface of the PVDF membrane to introduce the hydroxyl active site. Then, cerium ion (Ce4+) was used to initiate the copolymerization between DMC and CAA on the membrane surface to obtain polyelectrolyte-modified PVDF hollow fiber microporous membrane. By controlling the grafting reaction conditions, a modified membrane with high hydrophilicity, high permeation and good anti-protein-fouling performance was obtained. The results showed that the pure water flux of the polyelectrolyte-modified PVDF membrane maintained a high level reaching 912 L/[m2·h·(0.1MPa)]. The water contact angle of the modified membrane surface became 0° at 52s. At the same time, the modified membrane had excellent resistance to protein which showed low operating pressure rise rate in filtration of protein solution and low contaminant content on the membrane surface.
第一作者个人简介,胡丹,1990年出生,女,籍贯湖北,博士学位,北京工商大学讲师,研究方向为水处理技术、膜分离技术、聚结分离技术。联系电话010-68985446,E-mail:hud@btbu.edu.cn. *通讯作者邮箱:xl-wang@tsinghua.edu.cn

参考文献:
[1] Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. J Membr Sci, 2011, 375(1-2): 1-27.
[2] Jiang J H, Zhu L P, Zhang H T, et al. Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives[J]. J Membr Sci, 2014, 457: 73-81.
[3] Sun J, Wu L and Hu F. Preparation and characterization of a PVDF/EG-POSS hybrid ultrafiltration membrane for anti-fouling improvement[J]. RSC Adv, 2015, 5(51): 40753-40763.
[4] Zhao Y H, Wee K H and Bai R. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method[J]. J Membr Sci, 2010, 362(1-2): 326-333.
[5] 顾明浩,张军,王晓琳. 聚偏氟乙烯微孔膜制备方法研究进展[J]. 工业水处理, 2006, 26(2): 5-9.
[6] Zhang Z, Chen S F, Chang Y, et al. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings[J]. J.?Phys.?Chem.?B, 2006, 110: 10799-10804.
[7] Ostuni E, Chapman R G, Holmlin R E, et al. A survey of structure-property relationships of surfaces that resist the adsorption of protein[J]. Langmuir, 2001, 17: 5605-5620.
[8] Bernards M T, Cheng G, Zhang Z, et al. Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization[J]. Macromolecules, 2008, 41: 4216-4219.
[9] Li G, Xue H, Gao C, et al. Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups[J]. Macromolecules, 2010, 43(1): 14-16.
[10] 王庐岩, 钱英, 刘淑秀,等. 聚偏氟乙烯分离膜改性研究进展[J]. 膜科学与技术, 2002, 22(5): 52-57.
[11] 张迪, 周晓吉, 蒋文韬,等.共聚物对聚偏二氟乙烯膜的抗污染改性研究进展[J]. 水处理技术, 2019, 45(12): 13-18.
[12] Zhu Y, Xie W, Zhang F, et al. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl Mater Interfaces, 2017, 9(11): 9603-9613.
[13] Tang S H, Venault A, Hsieh C, et al. A bio-inert and thermostable zwitterionic copolymer for the surface modification of PVDF membranes. J Membr Sci, 2020, 598: 14.
[14] Sun Y, Zong Y, Yang N, et al. Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation. Sep Purif Technol, 2020, 234: 116015.
[15] Kato K, Uchida E, Kang E T, et al. Polymer surface with graft chains[J]. Prog Polym Sci, 2003, 28(2): 209-259.
[16] Li Q, Bi Q Y, Lin H H, et al. A novel ultrafiltration (UF) membrane with controllable selectivity for protein separation[J]. J Membr Sci, 2013, 427: 155-167.
[17] Wang S Y, Fang L F, and Matsuyama H. Construction of a stable zwitterionic layer on negatively-charged membrane via surface adsorption and cross-linking[J]. J Membr Sci, 2020, 597: 9.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号