反应沉淀微滤耦合工艺在水处理中应用研究进展
作者:扈阳,林亚凯,唐元晖,安康,田野,王晓琳
单位: 1. 中国矿业大学(北京) 化学与环境工程学院,北京 100083;2. 清华大学化学工程系 膜材料与工程北京市重点实验室,北京 100084;3. 北京赛诺膜技术有限公司,北京 100083
关键词: 反应沉淀;微滤;废水处理;膜污染;资源回收
出版年,卷(期):页码: 2020,40(4):126-131

摘要:
反应沉淀微滤耦合工艺是通过将反应沉淀和微滤耦合并辅以其他技术来实现对废水的深度处理或资源回收,能够很好的替代传统废水处理工艺,近年来在工业废水处理领域中得到了越来越广泛的应用。本文对这一工艺的基本主要原理流程、技术难点优化和近年的发展及应用进行了总结,首先从反应沉淀微滤耦合工艺的过程机理出发,阐述了反应沉淀过程强化和微滤过程中膜污染控制两个主要技术难点优化重点;然后综述该工艺在工业废水处理和某些具有价值的离子资源回收的应用研究进展,主要介绍了反渗透浓水体系、工业循环冷却水系统排污水体系、放射性废水体系的处理和铬、锰等离子的资源回收利用;最后,展望了反应沉淀微滤耦合工艺在废水处理领域未来的发展方向。
Microfiltration coupled with reaction precipitation process can be regarded as a good substitute for the traditional wastewater treatment, especially with additional help from other techniques, and it has been widely applied in the wastewater treatment field in recent years. This paper gives a summarization on principles, critical points and applications of this process in recent decades. Firstly, based on the mechanism of the combining process of reaction precipitation and microfiltration, how to optimize the two main processes of reaction precipitation process strengthening and the control of membrane fouling problem were described. Secondly, the application research progress of combination process of reaction precipitation and microfiltration in the treatment of industrial wastewater and resource recovery was reviewed, including the treatment of RO concentrated water system, industrial circulating wastewater system, radioactive wastewater system and the recovery and utilization of ions in wastewater systems including chromium and manganese, etc. Finally, the future development of the combining process of reaction precipitation and microfiltration in water treatment is prospected.
第一作者简介:扈阳(1995-),男,四川成都人,硕士研究生,从事膜科学与应用,E-mail:17801095062@163.com *通讯作者,林亚凯,E-mail:yk_lin@tsinghua.edu.cn

参考文献:
[1]秦昌波, 李新, 容冰, 等. 我国水环境安全形势与战略对策研究[J]. 环境保护, 2019, 47(08): 20-23.
[2]周安然, 王永磊, 孙韶华, 等. 膜过滤耦合高级氧化技术去除水中抗生素的研究进展[J]. 膜科学与技术, 2019, 39(01): 110-115.
[3]王怀林, 云金明, 吴欢, 等. 膜分离技术在脱硫废水零排放处理中的应用研究[J]. 膜科学与技术, 2018, 38(06): 105-110.
[4]刘壮, 朱瓌之, 漆虹. 基于“絮凝-陶瓷膜耦合技术”的甜菊糖苷纯化工艺研究[J]. 膜科学与技术, 2018, 38(01): 91-96.
[5]李友铃, 邓志毅, 柳寒, 等. 无机陶瓷膜分离耦合高级氧化技术在水处理中的研究进展[J]. 膜科学与技术, 2017, 37(05): 134-141.
[6]张维润, 樊雄. 膜分离技术处理放射性废水[J]. 水处理技术, 2009, 35(10): 1-5.
[7]Fane A G, Tang C Y, Wang R. Treatise on water science[M]// Amsterdam: Elsevier Science BV, 2011: 301-335.
[8]王丹, 顾平, 王利桃, 等. 沉淀-混凝-微滤组合工艺处理含锡废水[J]. 中国给水排水, 2018, 34(05): 96-100.
[9]丁桓如, 吴春华, 龚云峰. 工业用水处理工程[M]// 北京: 清华大学出版社, 2014: 53-116.
[10]高杰. 组合微滤工艺处理含铯锶废水以及造粒法的研究[D]. 天津: 天津大学, 2010.
[11]Wu L Y, Zhang G H, Wang Q Z. et al. Removal of strontium from liquid waste using a hydraulic pellet co-precipitation microfiltration (HPC-MF) process[J]. Desalination, 2014, 340: 31-38.
[12]季晓静, 顾平, 骆欣, 等. 机械搅拌造粒法处理含锶废水[J]. 中国给水排水, 2012, 28(07): 32-37.
[13]王全震. 水力造粒—微滤组合工艺处理模拟含锶放射性废水[D]. 天津: 天津大学, 2014.
[14]牛蕙, 武莉娅, 张光辉, 等. 水力搅拌-微滤工艺处理含锶废水的影响因素[J]. 工业水处理, 2015, 35(09): 28-32.
[15]杨宗政, 顾平. 膜生物反应器运行中的膜污染及其控制[J]. 膜科学与技术, 2005, 25(02): 80-84.
[16]赵百添, 陆茵, 张盛杰. 聚氯乙烯及改性膜对不同物质的抗污染性和膜清洗效果[J]. 膜科学与技术, 2015, 35(06): 48-54+66.
[17]Ordonez R, Moral A, Hermosilla D, et al. Combining coagulation, softening and flocculation to dispose reverse osmosis retentates[J]. J Ind Eng Chem, 2012, 18(03): 926-933.
[18]Mccool B C, Rahardianto A, Cohen Y. Antiscalant removal in accelerated desupersaturation of RO concentrate via chemically-enhanced seeded precipitation (CESP)[J]. Water Res, 2012, 46(13): 4261-4271.
[19]Bagastyo A Y, Keller J, Poussade Y, et al. Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants[J]. Water Res, 2011, 45(07): 2415-2427.
[20]王丽丽. 反渗透浓水硬度与有机污染物的去除研究[D]. 天津: 天津大学, 2012.
[21]Wu Y Y, Zhou S Q, Zheng K, et al. Mathematical model analysis of Fenton oxidation of landfill leachate[J]. Waste Manage, 2011, 31(03): 468-474.
[22]尹连庆, 关新玉. 石灰软化法处理循环冷却水系统排污水[J]. 工业用水与废水, 2005(04): 32-35.
[23]关新玉. 石灰软化—微滤技术处理电厂循环冷却排污水的应用研究[D]. 河北: 华北电力大学(河北), 2005.
[24]胡大龙, 许臻, 杨永, 等. 火电厂循环水排污水回用处理工艺研究[J]. 工业水处理, 2019, 39(01): 33-36.
[25]Theiss F L, Ayoko G A, Frost R L. Iodide removal using LDH technology[J]. Chem Eng J, 2016, 296: 300-309.
[26]Sachse A, Merceille A, Barre Y, et al. Macroporous LTA-monoliths for in-flow removal of radioactive strontium from aqueous effluents: Application to the case of Fukushima[J]. Microporous Mesoporous Mater, 2012, 164(SI): 251-258.
[27]Cao J G, Gu P, Zhao J, et al. Removal of strontium from an aqueous solution using co-precipitation followed by microfiltration(CPMF)[J]. J Radioanal Nucl Chem, 2010, 285(03): 539-546.
[28]Nao K I, Ayumi I, Teruyuki U. Fate of stable strontium in the sewage treatment process as an analog for radiostrontium released by nuclear accidents[J]. J Hazard Mater, 2013, 260: 420-424.
[29]Liu Y, Gu P, Yang Y, et al. Removal of radioactive iodide from simulated liquid waste in ab integrated precipitation reactor and membrane separator (PR-MS) system[J]. Sep and Purif Technol, 2016, 171: 221-228.
[30]杨云, 顾平, 刘阳, 等. 沉淀-微滤组合工艺处理模拟含碘放射性废水[J]. 化工学报, 2017, 68(03): 1211-1217.
[31]周师帅, 顾平, 刘阳, 等. 预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水[J]. 环境工程学报, 2019, 13(03): 586-593.
[32]黄羽, 顾平, 张光辉. 机械搅拌/微滤组合工艺处理含锶废水[J]. 中国给水排水, 2014, 30(15): 125-128.
[33]麻思明. 共沉淀-微滤组合工艺处理钴、锶混合废水[D]. 天津: 天津大学, 2013.
[34]周里海. 共沉淀-微滤组合工艺处理钴、锶混合废水[D]. 天津: 天津大学, 2014.
[35]龚佳豪, 张光辉, 顾平. 钴离子共存对造粒共沉淀/微滤除锶的影响[J]. 中国给水排水, 2016, 32(23): 41-45.
[36]靳向丹. 搅拌造粒-微滤组合工艺处理含锶、铁、镍废水[D]. 天津: 天津大学, 2013.
[37]张怡, 尚轩, 张光辉, 等. 机械搅拌—微滤组合工艺处理含锶、锰废水[J]. 中国给水排水, 2016, 32(11): 109-113.
[38]李航彬, 钱波, 黄聪聪, 等. 钡盐沉淀法处理六价铬电镀废水[J]. 电镀与涂饰, 2014, 33(09): 391-395.
[39]梅颖, 薛余化, 叶恒朋, 等. 利用二氧化碳选择性分离回收含锰废水中的锰[J]. 化工学报, 2017, 68(07): 2798-2804.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号