耐高温PBI基质子-电子混合传导复合膜的构制及其氢渗透性能研究
作者:高 波,范议议,孟秀霞,靳 昀,孟波,杨乃涛
单位: 山东理工大学化学化工学院,山东淄博255049
关键词: 膜分离; PBI;质子-电子混合导体;氢渗透; 耐高温.
出版年,卷(期):页码: 2020,40(6):7-13

摘要:
膜分离是一种成本低、高效、绿色的纯化技术,但以有机物膜在高温环境中由于其分子链的断裂具有较大的挑战。本文以3,3′-二氨基联苯胺(DABz)和间苯二甲酸(IPA)为原料,采用“熔融聚合法”合成了低分子量的可耐高温的聚(2, 2’-(间苯基)-5, 5’-联苯并咪唑)(mPBI)有机膜材料;以异氰尿酸三缩水甘油酯(TGIC)为交联剂,并浸渍磷酸,提供质子传导路径,添加片状石墨作为电子导体,得到质子-电子混合导体mPBI-TGIC/石墨/H3PO4交联复合膜。对交联复合膜进行结构和性能表征,结果表明交联复合膜具有良好的机械性能和抗氧化稳定性。用于H2/CO2混合气体分离,300 °C时,氢气选择性高达100%,渗透量为0.14 mL min-1 cm-2;280 °C时,可稳定运行160 h。这些表明mPBI-TGIC/石墨/H3PO4交联复合膜具有良好的耐高温性,可有望用于工业高温气体的分离。
 
Membrane separation is a green energy-saving technology for gas separation and purification. Based on 3,3′-diaminobenzidine (DABz) and isophthalic acid (IPA) as raw materials, poly [2, 2 '-(m-phenyl) -5,5'-bibenzimidazole] (mPBI) with low molecular weight is synthesized by the “melt polymerization method”. The mPBI-TGIC/graphite/H3PO4 cross-linked composite membrane is obtained using triglycidyl isocyanurate (TGIC) as cross-linking agent and flake graphite as electronic conductor combining with impregnated phosphoric acid. The structural and performance characterization of the cross-linked composite membrane show that the cross-linked composite membrane has good mechanical properties and anti-oxidation stability. For separation of H2/CO2 mixed gas, the hydrogen selectivity is up to 100%, and the permeation flux is 0.14 mL min-1 cm-2 at 300 °C. The 160 h long-term stability at 280 °C indicates that mPBI-TGIC/graphite/H3PO4 cross-linked composite membrane has good high temperature resistance and applicable for high-temperature hydrogen separation.
作者简介:高波(1992-06 ),男,山东枣庄,硕士,研究方向为膜分离与技术,E-mail:1456757351@qq.com

参考文献:
[1] Klerke A, Christensen C H, Nørskov J K, et al. Ammonia for hydrogen storage: challenges and opportunities [J]. Journal of Materials Chemistry, 2008, 18(20): 2304-2310.
[2] Mariscal R, Maireles-Torres P, Ojeda M, et al. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels [J]. Energy & Environmental Science, 2016, 9(4): 1144-1189.
[3] Thomas C, Kuhn Jr I, James B, et al. Affordable hydrogen supply pathways for fuel cell vehicles [J]. International Journal of Hydrogen Energy, 1998, 23(6): 507-516.
[4] Edwards P P, Kuznetsov V L, David W I, et al. Hydrogen and fuel cells: towards a sustainable energy future [J]. Energy Policy, 2008, 36(12): 4356-4362.
[5] 杨胜,张显娟,逯鹏,魏雅宇,陈晨,李砚硕.PBI膜在CO2捕集方面的研究进展[J].膜科学与技术,2019,39(06):150-159.
[6] Turner J A J S. Sustainable hydrogen production [J]. Science, 2004, 305(5686): 972-974.
[7] Ockwig N W, Nenoff T M J C r. Membranes for hydrogen separation [J]. Chem. Rev, 2007, 107(10): 4078-4110.
[8] Wang S, Wu Y, Zhang N, et al. A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture [J]. Energy & Environmental Science, 2016, 9(10): 3107-3112.
[9] Shen J, Liu G, Huang K, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture [J]. Angewandte Chemie, 2015, 127(2): 588-592.
[10] Li H, Song Z, Zhang X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation [J]. Science, 2013, 342(6154): 95-98.
[11] 夏玲玲,王艳.聚苯并咪唑(PBI)渗透汽化膜的研究进展[J]. 膜科学与技术,2014,34(05):116-124.
[12] Asensio J A, Sánchez E M, Gómez-Romero P J C S R. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest [J]. J Chemical Society Reviews, 2010, 39(8): 3210-3239.
[13] Li Q, Jensen J O, Savinell R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells [J]. Progress in polymer science, 2009, 34(5): 449-477.
[14] Naderi A, Tashvigh A A, Chung T-S, et al. Molecular design of double crosslinked sulfonated polyphenylsulfone/polybenzimidazole blend membranes for an efficient hydrogen purification [J]. Journal of Membrane Science, 2018, 563(726-733.
[15] Zhu J, Meng X, Zhao J, et al. Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers [J]. Journal of Membrane Science, 2017, 535(143-150.
[16] Zhu L, Swihart M T, Lin H J J o M C A. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation [J]. Journal of Materials Chemistry A, 2017, 5(37): 19914-19923.
[17] Bose S, Kuila T, Nguyen T X H, et al. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges [J]. Progress in polymer science, 2011, 36(6): 813-843.
[18] Zhu L, Swihart M T, Lin H J E, et al. Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation [J]. Energy & Environmental Science, 2018, 11(1): 94-100.
[19] Yang J, He R, Aili D. Synthesis of polybenzimidazoles[M]. High Temperature Polymer Electrolyte Membrane Fuel Cells. City: Springer, 2016: 151-167.
[20] Sun P, Li Z, Wang S, et al. Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline [J]. Journal of Membrane Science, 2018, 549(660-669.
[21] Vuilleumier R, Borgis D J N c. Hopping along hydrogen bonds [J]. Nature chemistry, 2012, 4(6): 432-433
[22] Fan Y, Wei L, Meng X, et al. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving[J]. Journal of Membrane Science, 2019, 569: 117-123.
[23] Naderi A, Tashvigh A A, Chung T-S J J o m s. H2/CO2 separation enhancement via chemical modification of polybenzimidazole nanostructure[J]. Journal of Membrane Science, 2019, 572: 343-349.
[24] Han S H, Lee J E, Lee K-J, et al. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement[J]. International journal of hydrogen energy, 2010, 357(1-2): 143-151.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号