渗透蒸发脱盐技术研究进展
作者:邱柯卫12,苏伟1,孙志猛23,朱英文23,李继定4,张忠国23
单位: 1. 天津大学 化工学院,天津 300350;2. 北京市科学技术研究院 轻工业环境保护研究所 全国循环经济工程实验室,北京 100095;3. 中国轻工业节能节水与废水资源化重点实验室,北京 100095;4. 清华大学 化学工程系 化学工程国家重点联合实验室,北京 100084
关键词: 渗透蒸发/渗透汽化;脱盐;膜;水处理;进展
分类号: TQ028.4
出版年,卷(期):页码: 2020,40(6):133-140

摘要:
我国是全球人均水资源最贫乏的国家之一,海水淡化、苦咸水脱盐等是解决我国水资源短缺的重要手段之一。以反渗透、纳滤为代表的膜法脱盐技术由于具有投资和能耗较低、易于实现自动控制等优势,目前应用比较广泛,是脱盐技术的一个重要发展方向。渗透蒸发(PV)是一种出现较早的膜分离技术,广泛应用于有机物与水的分离。与其他膜技术相比,渗透蒸发法脱盐具有盐截留率高、能耗低、预处理要求低等优点,因此近年来其在脱盐方面的研究与应用日益引起人们的关注。本文聚焦于渗透蒸发法脱盐技术,主要从渗透蒸发脱盐原理、传质模型、影响因素,以及渗透蒸发脱盐膜的种类及其性能等方面进行总结和评述,以便为渗透蒸发脱盐技术的研究及应用提供参考。
 China is one of the countries with the poorest water resources per capita in the world. Desalination of seawater and brackish water is an important method to solve the shortage of water resources in China. Membrane desalination technologies such as reverse osmosis (RO) and nanofiltration (NF) have the advantages of low investment, low energy consumption and easy to realize automatic control, which are currently widely used and have become an important development direction for desalination. Pervaporation (PV) is an early membrane separation technology which is widely used in the separation of organic matter and water. Compared with the other membrane technologies, pervaporation desalination has the advantages of high salt rejection rate, low energy consumption and low pretreatment requirements, and so its research and application in desalination have drawn more and more attentions in recent years. In this paper, the principles, the mass transfer models, the influencing factors of desalination process, and the membrane types for pervaporation desalination are summarized and reviewed to provide reference for the research and application of pervaporation desalination technology.

基金项目:
国家重点研发计划“水资源高效开发利用”课题(2016YFC0400509,2016YFC0400506);国家自然科学基金项目(21776153);北京市百千万人才工程项目(2019A40);北京市科学技术研究院高水平创新团队计划项目(HIT201901);北京市公益性科研院所改革与发展专项项目(2019G-4;2019G-8)

作者简介:
邱柯卫(1993-),男,硕士研究生,主要从事膜技术研究工作,E-mail:qkwttxs@163.com.

参考文献:
[1] Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science advances, 2016, 2(2):e1500323.
[2] Kavitha J, M Rajalakshmi, Phani A R, et al. Pretreatment processes for seawater reverse osmosis desalination systems—A review[J]. Journal of Water Process Engineering, 2019, 32:100926.
[3] Usman M A, Sudesh R, Yusuf M I. Membrane desalination technologies in water treatment: A review[J]. Water Practice and Technology, 2018, 13(4):738–752.
[4] Zhao Y, Zhang Z, Dai L, et al. Enhanced both water flux and salt rejection of reverse osmosis membrane through combining isophthaloyl dichloride with biphenyl tetraacyl chloride as organic phase monomer for seawater desalination[J]. Journal of Membrane Science, 2017, 522:175-182.
[5] Wang Q, Li N, Bolto B, et al. Desalination by pervaporation: A review[J]. Desalination, 2016, 387:46-60.
[6] Kober P A. Pervaporation, perstillation and percrystallization[J]. Journal of Membrane Science, 1995, 100(1):61-64.
[7] Heisler E G, Hunter A S, Siciliano J, et al. Solute and temperature effects in the pervaporation of aqueous alcoholic solutions[J]. Science, 1956, 124(3211):77-79.
[8] Silvestre W P, Livinalli N F, Baldasso C, et al. Pervaporation in the separation of essential oil components: A review[J]. Trends in Food Science & Technology, 2019, 93:42-52.
[9] Ahunbay M G. Achieving high water recovery at low pressure in reverse osmosis processes for seawater desalination[J]. Desalination, 2019, 465(1):58-68.
[10] Amy G, Ghaffour N, Li Z, et al. Membrane-based seawater desalination: Present and future prospects [J]. Desalination, 2017, 401:16-21.
[11] Song Y, Xu J, Xu Y, et al. Performance of UF–NF integrated membrane process for seawater softening[J]. Desalination, 2011, 276(1):109-116.
[12] Liu Y, Wang J, Wang L. An energy-saving “nanofiltration/electrodialysis with polarity reversal (NF/EDR)” integrated membrane process for seawater desalination. Part III.Optimization of the energy consumption in a demonstration operation[J]. Desalination, 2019, 452:230-237.
[13] Tan C H, Ng H Y. A novel hybrid forward osmosis - nanofiltration (FO-NF) process for seawater desalination: Draw solution selection and system configuration[J]. Desalination and water treatment, 2010, 13(1-3):356-361.
[14] Yangali V, Li Z, Valladares R, et al. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse[J]. Desalination, 2011, 280(1):160-166.
[15] Zhao S, Zou L, Mulcahy D. Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute [J]. Desalination, 2012, 284:175-181.
[16] Cipollina A, Sparti M G D, Tamburini A, et al. Development of a Membrane Distillation module for solar energy seawater desalination[J]. Chemical Engineering Research and Design, 2012, 90(12):2101-2121.
[17] Dong G, Kima J F, Kima J F, et al. Open-source predictive simulators for scale-up of direct contactmembrane distillation modules for seawater desalination[J]. Desalination, 2017, 402:72-87.
[18] Camacho L M, Dumée L, Zhang J, et al. Advances in membrane distillation for water desalination and purification applications[J]. Water, 2013, 5(1):94-196.
[19] Zhou W A, Liu X, Chai P W, et al. Natural zeolite clinoptilolite-phosphate composite membranes for water desalination by pervaporation[J]. Journal of Membrane Science, 2014, 470:431-438.
[20] Zhou C, Zhou J J, Huang A S. Seeding-free synthesis of zeolite FAU membrane for seawater desalination by pervaporation [J]. Microporous and Mesoporous Materials, 2016, 234:377-383.
[21] Shao P, Huang R Y M. Polymeric membrane pervaporation[J]. Journal of Membrane Science, 2007, 287(2):162-179.
[22] Okada, Tomoyuki, Yoshikawa Masakazu, et al. A study on the pervaporation of ethanol/water mixtures on the basis of pore flow model[J]. Journal of Membrane Science, 1991, 59(2):151-168.
[23] Lipnizki F, Trägårdh G. Modelling of pervaporation: models to analyze and predict the mass transport in pervaporation[J]. Separation & Purification Reviews, 2001, 30(1):49-125.
[24] Krishna R, Broeke L J P. The Maxwell-Stefan description of mass transport across zeolite membranes[J]. The Chemical Engineering Journal and The Biochemical Engineering Journal, 1995, 57(2):155-162.
[25] Binning R, Lee R, Jennings J, et al. Separation of Liquid Mixtures by Permeation[J]. Industrial & Engineering Chemistry, 1961, 53(1):45-50.
[26] Elma M, Yacou C, Wang D, et al. Microporous Silica Based Membranes for Desalination[J]. Water, 2012, 4(3):629-649.
[27] Fouad E A, Feng X. Use of pervaporation to separate butanol from dilute aqueous solutions: Effects of operating conditions and concentration polarization[J]. Journal of Membrane Science, 2008, 323(2):428-435.
[28] 李多, 姜忠义, 王艳强. 渗透蒸发传质理论与模型(Ⅱ )溶解行为[J]. 膜科学与技术, 2003, 23(5): 60-64.
[29] Ju H, Sagle A C, Freeman B D, et al. Characterization of sodium chloride and water transport in crosslinked poly(ethylene oxide) hydrogels[J]. Journal of Membrane Science, 2010, 358(1-2):131-141.
[30] Xie Z, Hoang M, Ng D, et al. Effect of heat treatment on pervaporation separation of aqueous salt solution using hybrid PVA/MA/TEOS membrane[J]. Separation & Purification Technology, 2014, 127:10-17.
[31] Kujawski W, Krajewska S, Kujawski M, et al. Pervaporation properties of fluoroalkylsilane (FAS) grafted ceramic membranes[J]. Desalination, 2007, 205(1):75-86.
[32] Xie Z, Ng D, Hoang M, et al. Separation of aqueous salt solution by pervaporation through hybrid organic–inorganic membrane: Effect of operating conditions[J]. Desalination, 2011, 273(1):220-225.
[33] Huth E, Satish M, Luke R, et al. Feasibility assessment of pervaporation for desalinating high-salinity brines[J]. Journal of Water Reuse and Desalination, 2014, 4(2):109-124.
[34] Liang B, Zhan W, Qi G, et al. High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications[J]. Journal of Materials Chemistry A, 2015, 3(9):5140-5147.
[35] Wang X, Dong H, Zeng Z, et al. Measurement and Correlation of the Saturated Vapor Pressure of Vinyltriethoxysilane[J]. Journal of Solution Chemistry, 2015, 44(1):67-76.
[36] Kovac, Jeffrey. Molecular size and Raoult\"s Law[J]. Journal of Chemical Education, 1985, 62(12): 1090.
[37] Dai Y, Qu Y, Wang S, et al. Measurement, correlation, and prediction of vapor pressure for binary and ternary systems containing an ionic liquid 1,3-dimethylimidazolium methylsulfate[J]. Fluid Phase Equilibria, 2015, 385:219-226.
[38] Zwijnenberg H J, Koops G H, Wessling M. Solar driven membrane pervaporation for desalination processes[J]. Journal of Membrane Science, 2005, 250(1-2):235-246.
[39] Sule M, Jiang J, Templeton M, et al. Salt rejection and water flux through a tubular pervaporative polymer membrane designed for irrigation applications[J]. Environmental Technology, 2013, 34(9-12):1329-1339.
[40] Hamouda, Sofiane, Ben, et al. PEBAX membranes for water desalination by pervaporation process[J]. High Performance Polymers, 2011, 23(2):170-173.
[41] Duke M C, Mee S, Diniz J C. Performance of porous inorganic membranes in non-osmotic desalination[J]. Water Research, 2007, 41(17):3998-4004.
[42] Khajavi S, Jansen J C, Kapteijn F. Production of ultra pure water by desalination of seawater using a hydroxy sodalite membrane[J]. Journal of Membrane Science, 2010, 356(1-2):52-57.
[43] Liang B, Pan K, Li L, et al. High performance hydrophilic pervaporation composite membranes for water desalination[J]. Desalination, 2014, 347:199-206.
[44] Malekpour A, Millani M R, Kheirkhah M. Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions[J]. Desalination, 2008, 225(1-3):199-208.
[45] Duke M C, Jessica O’Brien-Abraham, Milne N, et al. Seawater desalination performance of MFI type membranes made by secondary growth[J]. Separation & Purification Technology, 2009, 68(3):343-350.
[46] Peng F, Lu L, Sun H, et al. Analysis of annealing effect on pervaporation properties of PVA-GPTMS hybrid membranes through PALS[J]. Journal of Membrane Science, 2006, 281(1-2):600-608.
[47] Feng X, Huang R Y M. Estimation of activation energy for permeation in pervaporation processes[J]. Journal of Membrane Science, 1996, 118(1):127-131.
[48] Malekpour A, Samadi-Maybodi A, Sadati M R. Desalination of aqueous solutions by LTA and MFI zeolite membranes using pervaporation method[J]. Brazilian Journal of Chemical Engineering, 2011, 28(4):669-677.
[49] Lau W J, Ismail A F, Misdan N, et al. A recent progress in thin film composite membrane: A review[J]. Desalination, 2012, 287:190-199.
[50] Korin E, Ladizhensky I, Korngold E. Hydrophilic hollow fiber membranes for water desalination by the pervaporation method[J]. Chemical Engineering and Processing, 1996, 35(6):451-457.
[51] Kuznetsov Y P, Kruchinina E V, Baklagina Y G, et al. Deep desalination of water by evaporation through polymeric membranes[J]. Russian Journal of Applied Chemistry, 2007, 80(5):790-798.
[52] Naim M, Elewa M, El-Shafei A, et al. Desalination of simulated seawater by purge-air pervaporation using an innovative fabricated membrane[J]. Water Science & Technology, 2015, 72(5):785.
[53] Le N L, Wang Y, Chung T S. Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation[J]. Journal of Membrane Science, 2011, 379(1-2):174-183.
[54] Tu K L, Nghiem L D, Chivas A R. Boron removal by reverse osmosis membranes in seawater desalination applications[J]. Separation & Purification Technology, 2010, 75(2):87-101.
[55] Chaudhri S G, Rajai B H, Singh P S. Preparation of ultra-thin poly(vinyl alcohol) membranes supported on polysulfone hollow fiber and their application for production of pure water from seawater[J]. Desalination, 2015, 367:272-284.
[56] Yu M, Noble R D, Falconer J L. Zeolite Membranes: Microstructure Characterization and Permeation Mechanisms[J]. Accounts of Chemical Research, 2011, 44(11):1196-1206.
[57] Drobek M, Yacou C, Motuzas J, et al. Long term pervaporation desalination of tubular MFI zeolite membranes[J]. Journal of Membrane Science, 2012, 415-416(10):816-823.
[58] Ladewig B P, Han T Y, Lin C X C, et al. Preparation, Characterization and Performance of Templated Silica Membranes in Non-Osmotic Desalination[J]. Materials, 2011, 4(5):845-856.
[59] Duke M C, Diniz J C, Lu G Q, et al. Carbonised template molecular sieve silica membranes in fuel processing systems: permeation, hydrostability and regeneration[J]. Journal of Membrane Science, 2004, 241(2):325-333.
[60] Zhang H Y, Wen J L, Shao Q, et al. Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination[J]. Journal of Membrane Science, 2019, 584:353-363.
[61] Ying Y U, Ying W, Li Q C, et al. Recent advances of nanomaterial-based membrane for water purification[J]. Applied Materials Today, 2017, 7:144-158.
[62] Naguib M, Kurtoglu M, Presser V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
[63] Liu G, Shen J, Liu Q, et al. Ultrathin Two-dimensional MXene Membrane for Pervaporation Desalination[J]. Journal of Membrane Science, 2018, 548:548-558.
[64] Sun J W, Qian X W, Wang Z H, et al. Tailoring the microstructure of poly(vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation[J]. Journal of Membrane Science, 2020, 599:117838.
[65] Halakoo E, Feng X S. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation[J]. Separation and Purification Technology, 2020, 234:116077.
[66] Prihatiningtyas I, Gebreslase G A, Bruggen B Van der. Incorporation of Al2O3 into cellulose triacetate membranes to enhance the performance of pervaporation for desalination of hypersaline solutions[J]. Desalination, 2020, 474:114198.
[67] Selim A, Jozsef T A, Haaz E, et al. Preparation and characterization of PVA/GA/Laponite membranes to enhance pervaporation desalination performance[J]. Separation & Purification Technology, 2019, 221:201-210.
[68] Yang G, Xie Z L, Cran M, et al. Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering[J]. Journal of Membrane Science, 2019, 579:40-51.
[69] Zhang R, Liang B, Qu T, et al. High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination[J]. Environmental Technology, 2019, 40(3):312-320.
[70] Liang B, Li Q, Cao B, et al. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes[J]. Desalination the International Journal on the Science & Technology of Desalting & Water Purification, 2018, 433:132-140.
[71] Qian X, Li N, Wang Q, et al. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation[J]. Desalination, 2018, 438:83-96.
[72] Chaudhri S G, Chaudhari J C, Singh P S. Fabrication of efficient pervaporation desalination membrane by reinforcement of poly(vinyl alcohol)-silica film on porous polysulfone hollow fiber[J]. Journal of Applied Polymer Science, 2018, 135(3):45718.
[73] Xie Z, Hoang M, Duong T, et al. Sol-gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation[J]. Journal of Membrane Science, 2011, 383(1-2):96-103

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号