用于水中微污染物脱除的吸附型分离膜研究进展
作者:王章慧,方传杰,程 梁,胡 帆,刘璀静,姚之侃,朱利平
单位: 浙江大学高分子科学与工程学系,高分子合成与功能构造教育部重点实验室,杭州 310027
关键词: 吸附型分离膜;微污染脱除;表面凝胶填充;本体填充;原位复合
出版年,卷(期):页码: 2021,41(1):123-133

摘要:
饮水安全与健康是人类面临的重大问题之一,传统的以孔径筛分为分离机理的膜材料难以实现水中微污染物的特异性脱除以及有益物质的保留。针对这一问题,本研究小组近年来持续开展了用于水中微污染物脱除的吸附型分离膜基础研究与关键技术研发,该类膜材料将吸附功能和膜过滤功能结合起来,通过膜中吸附功能基团和微污染物之间的非共价相互作用,可实现水中微污染物的快速脱除。从吸附型分离膜的结构设计角度出发,通过表面凝胶填充、本体填充、原位复合等方法对分离膜进行吸附功能化改性,发展了一系列可用于污染物高效脱除的吸附型分离膜,并赋予膜抗污、抗菌、刺激响应、选择性吸附等多重功能,进一步研究了吸附分离机理,阐述膜结构与分离性能间的相互关系,为发展用于微污染物高效脱除的吸附分离膜提供理论与方法支撑。此外,关于饮用水中微污染脱除的膜材料制备与结构调控研究成果已实现从基础研究到实际应用的转化,所开发的中空纤维膜材料及其净水技术被应用于家用净水设备,已实现规模化生产与应用。
The safety of potable water has become one of the major problems. Traditional membrane separation technology cannot simultaneously remove pollutants in water and retain beneficial substances. In order to solve this problem, our research team has been carrying out basic researches and key technology researches of the adsorptive separation membranes, which combined adsorptive functional materials and filtration membranes. Under the forced convective mass transport, the pollutants were rapidly removed from water via the non-covalent interactions with the adsorption groups, while the beneficial substances can be retained in water. From the perspective of the structural design, this paper reviewed the various construction methods (surface gel filling, bulk filling and in-situ composite) of the adsorptive separation membrane with multiple functions, such as selective adsorption, anti-fouling, antibacterial, stimulus response, etc. Further, the separation mechanism and the relationship between the material structure and separation performance were elaborated, providing theoretical and methodological supports for the development of high-performance adsorptive separation membrane. In addition, the research achievements have been transferred from basic research to practical application. Also the developed hollow fiber membrane materials have been applied to household water purification equipment, and large-scale production and promotion have been realized.
王章慧(1993-),女,山西临汾,理学博士,吸附与分离材料,E-mail:11529024@zju.edu.cn

参考文献:
(1)  Bakker, K. Water Security: Research Challenges and Opportunities[J]. Science 2012, 337 (6097), 914–915.
(2)  Voeroesmarty, C. J.; McIntyre, P. B.; Gessner, M. O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S. E.; Sullivan, C. A.; Liermann, C. R.; Davies, P. M. Global Threats to Human Water Security and River Biodiversity[J]. Nature 2010, 467 (7315), 555–561.
(3)  Wang, Z.; Zhang, P.; Hu, F.; Zhao, Y.; Zhu, L. A Crosslinked β-Cyclodextrin Polymer Used for Rapid Removal of a Broad-Spectrum of Organic Micropollutants from Water[J]. Carbohydr. Polym. 2017, 177, 224–231.
(4)  Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment[J]. Sci. Total Environ. 2014, 473–474, 619–641.
(5)  Nada O. 2.1 Billion People Lack Safe Drinking Water at Home, More Than Twice As Many Lack Safe Sanitation, World Health Organization, News release, Geneva, 2017, 12 July.
(6)  Liang, H. W.; Cao, X.; Zhang, W. J.; Lin, H. T.; Zhou, F.; Chen, L. F.; Yu, S. H. Robust and Highly Efficient Free-Standing Carbonaceous Nanofiber Membranes for Water Purification[J]. Adv. Funct. Mater. 2011, 21 (20), 3851–3858.
(7)  Lau, W. J.; Ismail, A. F.; Misdan, N.; Kassim, M. A. A Recent Progress in Thin Film Composite Membrane: A Review[J]. Desalination 2012, 287, 190–199.
(8)  Lee, K. P.; Arnot, T. C.; Mattia, D. A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential[J]. J. Membr. Sci. 2011, 370 (1), 1–22.
(9)  Lalia, B. S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A Review on Membrane Fabrication: Structure, Properties and Performance Relationship[J]. Desalination 2013, 326, 77–95.
(10) Guo, Y. S.; Mi, Y. F.; Zhao, F. Y.; Ji, Y. L.; An, Q. F.; Gao, C. J. Zwitterions Functionalized Multi-Walled Carbon Nanotubes/Polyamide Hybrid Nanofiltration Membranes for Monovalent/Divalent Salts Separation[J]. Sep. Purif. Technol. 2018, 206, 59–68.
(11) Han, Y.; Xu, Z.; Gao, C. Ultrathin Graphene Nanofiltration Membrane for Water Purification[J]. Adv. Funct. Mater. 23 (29), 3693–3700.
(12) Wang, Z.; Guo, S.; Zhang, B.; Zhu, L. Hydrophilic Polymers of Intrinsic Microporosity as Water Transport Nanochannels of Highly Permeable Thin-Film Nanocomposite Membranes Used for Antibiotic Desalination[J]. J. Membr. Sci. 2019, 592, 117375.
(13) Marchetti, P.; Jimenez Solomon, M. F.; Szekely, G.; Livingston, A. G. Molecular Separation with Organic Solvent Nanofiltration: A Critical Review[J]. Chem. Rev. 2014, 114 (21), 10735–10806.
(14) Jimenez-Solomon, M. F.; Song, Q.; Jelfs, K. E.; Munoz-Ibanez, M.; Livingston, A. G. Polymer Nanofilms with Enhanced Microporosity by Interfacial Polymerization[J]. Nat. Mater. 2016, 15 (7), 760–767.
(15) Ghosh, R. Protein Separation Using Membrane Chromatography: Opportunities and Challenges[J]. J. Chromatogr. A 2002, 952 (1), 13–27.
(16) Liu, Z.; Wickramasinghe, S. R.; Qian, X. Membrane Chromatography for Protein Purifications from Ligand Design to Functionalization[J]. Sep. Sci. Technol. 2017, 52 (2), 299–319.
(17) Orr, V.; Zhong, L.; Moo-Young, M.; Chou, C. P. Recent Advances in Bioprocessing Application of Membrane Chromatography[J]. Biotechnol. Adv. 2013, 31 (4), 450–465.
(18) Baburaj, M. S.; Aravindakumar, C. T.; Sreedhanya, S.; Thomas, A. P.; Aravind, U. K. Treatment of Model Textile Effluents with PAA/CHI and PAA/PEI Composite Membranes[J]. Desalination 2012, 288, 72–79.
(19) Celebioglu, A.; Demirci, S.; Uyar, T. Cyclodextrin-Grafted Electrospun Cellulose Acetate Nanofibers via “Click” Reaction for Removal of Phenanthrene[J]. Appl. Surf. Sci. 2014, 305, 581–588.
(20) Wang, X.; Min, M.; Liu, Z.; Yang, Y.; Zhou, Z.; Zhu, M.; Chen, Y.; Hsiao, B. S. Poly(Ethyleneimine) Nanofibrous Affinity Membrane Fabricated via One Step Wet-Electrospinning from Poly(Vinyl Alcohol)-Doped Poly(Ethyleneimine) Solution System and Its Application[J]. J. Membr. Sci. 2011, 379 (1), 191–199.
(21) Wu, H.; Kong, J.; Yao, X.; Zhao, C.; Dong, Y.; Lu, X. Polydopamine-Assisted Attachment of β-Cyclodextrin on Porous Electrospun Fibers for Water Purification under Highly Basic Condition[J]. Chem. Eng. J. 2015, 270, 101–109.
(22) Cheng, L.; Zhang, P.-B.; Zhao, Y.-F.; Zhu, L.-P.; Zhu, B.-K.; Xu, Y.-Y. Preparation and Characterization of Poly (N-Vinyl Imidazole) Gel-Filled Nanofiltration Membranes[J]. J. Membr. Sci. 2015, 492, 380–391.
(23) 程梁. 聚乙烯基咪唑凝胶复合纳滤膜的结构调控与性能研究[D]. 浙江: 浙江大学, 2015.
(24) Cheng, L.; Zhu, L. P.; Zhang, P. B.; Sun, J.; Zhu, B. K.; Xu, Y. Y. Molecular Separation by Poly (N-Vinyl Imidazole) Gel-Filled Membranes. J. Membr. Sci. 2016, 497, 472–484. https://doi.org/10.1016/j.memsci.2015.09.030.
(25) Liu, C.; Cheng, L.; Zhao, Y.; Zhu, L. Interfacially Crosslinked Composite Porous Membranes for Ultrafast Removal of Anionic Dyes from Water through Permeating Adsorption[J]. J. Hazard. Mater. 2017, 337, 217–225.
(26) 刘璀静. 用于染料脱除的复合分离膜结构设计与制备研究[D]. 浙江: 浙江大学, 2017.
(27) Hu, F.; Wang, Z.; Zhu, B.; Zhu, L.; Xu, Y. Poly (N-Vinyl Imidazole) Gel-Filled Membrane Adsorbers for Highly Efficient Removal of Dyes from Water[J]. J. Chromatogr. A 2018, 1563, 198–206.
(28) Hu, F.; Fang, C.; Wang, Z.; Liu, C.; Zhu, B.; Zhu, L. Poly (N-Vinyl Imidazole) Gel Composite Porous Membranes for Rapid Separation of Dyes through Permeating Adsorption[J]. Sep. Purif. Technol. 2017, 188, 1–10.
(29) 胡帆. 聚乙烯基咪唑凝胶复合膜的结构调控及其染料脱除性能的研究[D]. 浙江: 浙江大学, 2018.
(30) Wang, Z.; Guo, S.; Zhang, B.; Fang, J.; Zhu, L. Interfacially Crosslinked β-Cyclodextrin Polymer Composite Porous Membranes for Fast Removal of Organic Micropollutants from Water by Flow-through Adsorption[J]. J. Hazard. Mater. 2020, 384, 121187.
(31) Yao, Z.; Li, Y.; Cui, Y.; Zheng, K.; Zhu, B.; Xu, H.; Zhu, L. Tertiary Amine Block Copolymer Containing Ultrafiltration Membrane with PH-Dependent Macromolecule Sieving and Cr(VI) Removal Properties[J]. Desalination 2015, 355, 91–98.
(32) 姚之侃. 叔胺两亲共聚物共混膜的制备及其过滤吸附性能的研究[D]. 浙江: 浙江大学, 2015.
(33) Yao, Z.; Cui, Y.; Zheng, K.; Zhu, B.; Zhu, L. Composition and Properties of Porous Blend Membranes Containing Tertiary Amine Based Amphiphilic Copolymers with Different Sequence Structures[J]. J. Colloid Interface Sci. 2015, 437, 124–131.
(34) Yao, Z.; Du, S.; Zhang, Y.; Zhu, B.; Zhu, L.; John, A. E. Positively Charged Membrane for Removing Low Concentration Cr(VI) in Ultrafiltration Process[J]. J. Water Process Eng. 2015, 8, 99–107.
(35) Wang, Z.; Cui, F.; Pan, Y.; Hou, L.; Zhang, B.; Li, Y.; Zhu, L. Hierarchically Micro-Mesoporous β-Cyclodextrin Polymers Used for Ultrafast Removal of Micropollutants from Water[J]. Carbohydr. Polym. 2019, 213, 352–360.
(36) Wang, Z.; Zhang, B.; Fang, C.; Liu, Z.; Fang, J.; Zhu, L. Macroporous Membranes Doped with Micro-Mesoporous β-Cyclodextrin Polymers for Ultrafast Removal of Organic Micropollutants from Water[J]. Carbohydr. Polym. 2019, 222, 114970.
(37) 王章慧. β-环糊精基聚合物中纳米通道的构筑及其分子分离性能研究[D]. 浙江: 浙江大学, 2020.
(38) 朱利平, 张斌, 胡帆, 王章慧. 一种用于水体微污染物脱除的膜色谱材料及其制备方法[P]. 中国, 发明专利, ZL201710386470.X. 2017年05月26日.
(39) 朱利平, 刘璀静, 方传杰, 张培斌, 王章慧, 胡帆,. 一种凝胶复合分离膜的制备方法[P]. 中国, 发明专利, ZL201510505066.0. 2015年08月17日.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号