聚乙烯/聚酰胺复合纳滤膜的卷式膜元件结构优化及理论分析
作者:石月荣,王中阳,王力,王帅,唐东利,王丽,夏建中
单位: 1.北京碧水源膜科技有限公司,北京 101400;2. 北京碧水源分离膜科技有限公司,北京 101400
关键词: PENF;卷式膜元件;给水隔网;压力损失;理论分析
出版年,卷(期):页码: 2021,41(2):18-24

摘要:
 新型聚乙烯/聚酰胺复合纳滤膜(PENF)具有特殊的抗污染机理和性能,且由于膜的超薄特性及运行过程中变形的特点,导致其卷膜参数与常规聚砜无纺布基纳滤膜存在一定的差异。本研究针对PENF膜特性,通过理论计算和实验验证相校核的方法,优化卷式膜元件给水隔网、产水隔网和卷膜页数,分析PENF膜变形量及膜页数对给水和产水流道水力学特性及元件产水量影响。结果表明,实验与理论计算具有较好的匹配度。在恒定膜面流速条件下,压力损失大小依次为3409>2016>3113>1332>2809。PENF变形量占据产水流道截面积的20%~30%左右。以最大装填率和最大产水量为优化目标,PENF三种型号膜元件最佳卷膜页数为:1812元件8页,2512元件15页,3013元件22页。与传统卷式膜元件相比装填率提高34%~98%,产水量增大52%~160%。
  Innovative polyethylene/polyamide composite nanofiltration membrane (PENF) has different anti-fouling mechanism and performance. This was attributed to the thin PE support layer which could be easily deformed under the applied pressure. The spiral-wound element preparation parameters of PENF membrane are different with traditional NF membrane, which supported by polysulfone non-woven fabric membrane. In this study, the verification of theoretical analysis and experiment was used to optimize the feed spacer, permeate spacer and membrane page of the element. Explore the influence of deformation and membrane page on the flux and hydraulic performances of feed and permeate channel. The results show that the theoretical calculation results are consistent with experiments. Under the constant membrane surface flow rate, the pressure loss of feed spacer is 3409>2016>3113>1332>2809. The deformation of PENF membrane occupies about 20% to 30% of the cross-sectional area of the permeate channel. In order to obtain the highest packing density and flux, the preparation parameters of three types element of PENF membrane are optimized: 1812 element with 8 pages, 2512 element with 15 pages and 3013 element with 22 pages. Compared with traditional spiral-wound membrane elements, the packing density is increased by 34% to 98%, and the flux is increased by 52% to 160%.
石月荣(1989-),女,宁夏固原人,研发工程师,硕士,研究方向为分离膜元件优化及流体模拟

参考文献:
 [1] 秦超凡,吴自成. 膜分离技术在家用净水机中的应用[J]. 科技创新导报, 2018, 15(08):129-130.
[2]龙小庆,罗敏,王占生. 活性炭-纳滤膜工艺去除饮用水中总有机碳和可同化有机碳[J]. 水处理技术, 2000(06):351-354.
[3] 祝振鑫. 荷电纳滤膜从水溶液中脱除或透过的是离子还是盐类分子[J]. 膜科学与技术, 2020,40(03):1-6.
[4] 侯立安, 高鑫, 赵兰. 纳滤膜技术净化饮用水的应用研究进展[J]. 膜科学与技术, 2012, 32(05):1-7.
[5] Li M, Bui T, Chao S. Three-dimensional CFD analysis of hydrodynamics and concentration polarization in an industrial RO feed channel[J]. Desalination, 2016, 397: 194-204.
[6] Gu B, Adjiman C S, Xu X Y. The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations[J]. J Membr Sci, 2017, 527: 78-91. 
[7] Bucs S S, Radu A I, Lavric V, et al. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study[J]. Desalination, 2014, 343: 26-37. 
[8] Lin W, Shao R, Wang X, Huang X. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: Experiment and numerical simulation[J]. Water Res, 2020, 185:116251.
[9] Wang S, Wang Z, Xia J, et al. Polyethylene-supported nanofiltration membrane with in situ formed surface patterns of millimeter size in resisting fouling[J]. J Membr Sci, https://doi.org/10.1016/j.memsci.2020.118830.
[10] 王双, 梁剑, 蔡相宇,等. 组件设计对卷式反渗透膜元件抗污染性及能耗影响[J]. 膜科学与技术, 2012, 32(04) :87-91.
[11] Schock G, Miquel A. Mass transfer and pressure loss in spiral wound modules[J]. Desalination, 1987, 64:339-352.
[12] 王涛, 展侠, 李继定. 平板膜组件内部流体流动状态的可视化[J]. 化工学报, 2014, 65(1):71-77
[13] Shang C, Wang L, Xia J, et al. Macropatterning of Microcrumpled Nanofiltration Membranes by Spacer Imprinting for Low-Scaling Desalination[J]. Environ. Sci. Technol., 2020, 54 (23):15527-15533.
[14] Anqi A E, Alkhamis N, Oztekin A. Numerical simulation of brackish water desalination by a reverse osmosis membrane[J]. Desalination, 2015, 369:156-164.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号