基于贻贝仿生化学的催化膜制备和功能探索研究进展
作者:宋思青,罗建泉,万印华
单位: 生化工程国家重点实验室,中国科学院过程工程研究所,中国科学院大学,北京 100190
关键词: 膜污染;表面改性;涂层;聚多巴胺;单宁酸
出版年,卷(期):页码: 2021,41(2):127-133

摘要:
 催化膜可实现催化剂重复使用和反应-分离耦合,从而提高催化效率,缓解膜污染,在环境、化工和食品领域具有极大的应用潜力。贻贝仿生化学作为一种新兴的表面改性技术在分离膜的表/界面功能化中发挥着重要作用,为催化膜的绿色制备提供了可能。本文首先简要介绍了贻贝仿生化学的基本原理,总结了基于贻贝仿生化学的催化膜制备方法,然后着重阐述了催化膜在微污染物去除、抗污染等方面的应用基础研究。最后对催化膜未来研究方向进行了展望,为推动其实际应用提供了理论指导。
 Catalytic membranes can realize catalyst reuse and reaction-separation coupling, thus improve catalytic efficiency and alleviating membrane pollution, which have great application potential in the environmental and chemical engineering as well as food processing fields. As an emerging surface modification technology, mussel-inspired chemistry plays an important role in the surface/interface functionalization of the separation membranes, which provides possibilities for the green preparation of catalytic membranes. In this review, the basic principles of mussel- inspired chemistry are introduced at first, and the strategies for preparing catalytic membranes based on mussel-inspired chemistry is then summarized. Subsequently, the applications of catalytic membranes in aqueous micro-pollutants removal and membrane fouling control enhancement are emphasized. Finally, the future research directions of catalytic membranes are prospected to provide theoretical guidance for its real applications.
宋思青(1997-),女,山西晋城人,硕士研究生,从事仿生多功能膜的制备和协同机制研究. E-mail:844082149@qq.com

参考文献:
 [1]Qing W, Li X, Shao S, et al. et al. Polymeric catalytically active membranes for reaction-separation coupling: A review[J]. J Membr Sci, 2019, 583: 118-138.
[2]Liu Y, Peng M, Jiang H, et al. Fabrication of ceramic membrane supported palladium catalyst and its catalytic performance in liquid-phase hydrogenation reaction[J]. Chem Eng J, 2017, 313: 1556-1566.
[3]Zhang H, Zhang H, Luo J, et al. Enzymatic Cascade Catalysis in a Nanofiltration Membrane: Engineering the Microenvironment by Synergism of Separation and Reaction[J]. ACS Appl Mater Interf, 2019, 11(25): 22419-22428.
[4]Chu Z, Zhang W, You Q, et al. A novel separation–sensing membrane performing precise real-time serum analysis during blood drawing[J]. Angew Chem Int Ed, 2020, DOI: 10.1002/anie.202008241.
[5]Su Z, Luo J, Pinelo M, et al. Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor[J]. J Membr Sci, 2018, 555: 268-279.
[6]Cao X, Luo J, Woodley J M, et al. Bioinspired Multifunctional Membrane for Aquatic Micropollutants Removal[J]. ACS Appl Mater Interf, 2016, 8(44): 30511-30522.
[7]Zhang L-P, Liu Z, Zhou X-L, et al. Novel composite membranes for simultaneous catalytic degradation of organic contaminants and adsorption of heavy metal ions[J]. Sep Purif Technol, 2020, 237: 116364.
[8]Wu H, Liu Y, Mao L, et al. Doping polysulfone ultrafiltration membrane with TiO2-PDA nanohybrid for simultaneous self-cleaning and self-protection[J]. J Membr Sci, 2017, 532: 20-29.
[9]Li S, Luo J, Wan Y. Regenerable biocatalytic nanofiltration membrane for aquatic micropollutants removal[J]. J Membr Sci, 2018, 549: 120-128.
[10]Lv Y, Zhang C, He A, et al. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment[J]. Adv Funct Mater, 2017, 27(27): 1700251.
[11]Lee H, Dellatore S M, Miller W M, et al. Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J]. Science, 2007, 318(5849): 426.
[12]杨静, 徐志康. 聚合物分离膜的表界面工程[J]. 膜科学与技术, 2018, 38(01): 1-8.
[13]Xu Y C, Tang Y P, Liu L F, et al. Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy[J]. J Membr Sci, 2017, 526: 32-42.
[14]Yang X, Sun H, Pal A, et al. Biomimetic Silicification on Membrane Surface for Highly Efficient Treatments of Both Oil-in-Water Emulsion and Protein Wastewater[J]. ACS Appl Mater Interf, 2018, 10(35): 29982-29991.
[15]Yang X, Yan L, Ran F, et al. Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation[J]. J Membr Sci, 2020, 597: 117753.
[16]Qiu W-Z, Wu G-P, Xu Z-K. Robust Coatings via Catechol–Amine Codeposition: Mechanism, Kinetics, and Application[J]. ACS Appl Mater Interf, 2018, 10(6): 5902-5908.
[17]Sousa A M L, Li T-D, Varghese S, et al. Highly Active Protein Surfaces Enabled by Plant-Based Polyphenol Coatings[J]. ACS Appl Mater Interf, 2018, 10(45): 39353-39362.
[18]Yang H-C, Waldman R Z, Wu M-B, et al. Dopamine: Just the Right Medicine for Membranes[J]. Adv Funct Mater, 2018, 28(8): 1705327.
[19]He Z, Mahmud S, Zhao S, et al. Hierarchically Active Poly(vinylidene fluoride) Membrane Fabricated by In Situ Generated Zero-Valent Iron for Fouling Reduction[J]. ACS Appl Mater Interf, 2020, 12(9): 10993-11004.
[20]Wang J, Wu Z, Li T, et al. Catalytic PVDF membrane for continuous reduction and separation of p-nitrophenol and methylene blue in emulsified oil solution[J]. Chem Eng J, 2018, 334: 579-586.
[21]Du Y, Yang H-C, Xu X-L et al. Polydopamine as a Catalyst for Thiol Coupling[J]. ChemCatChem, 2015, 7(23): 3822-3825.
[22]Ju K-Y, Lee Y, Lee S, et al. Bioinspired Polymerization of Dopamine to Generate Melanin-Like Nanoparticles Having an Excellent Free-Radical-Scavenging Property[J]. Biomacromolecules, 2011, 12(3): 625-632.
[23]Zhang C, Yang H-C, Wan L-S, et al. Polydopamine-Coated Porous Substrates as a Platform for Mineralized β-FeOOH Nanorods with Photocatalysis under Sunlight[J]. ACS Appl Mater Interf, 2015, 7(21): 11567-11574.
[24]Mao W-X, Lin X-J, Zhang W, et al. Core–shell structured TiO2@polydopamine for highly active visible-light photocatalysis[J]. Chem Commun, 2016, 52(44): 7122-7125.
[25]Feng J-J, Zhang P-P, Wang A-J, et al. One-step synthesis of monodisperse polydopamine-coated silver core–shell nanostructures for enhanced photocatalysis[J]. New J Chem, 2012, 36(1): 148-154.
[26]Shao D-D, Yang W-J, Xiao H-F, et al. Self-Cleaning Nanofiltration Membranes by Coordinated Regulation of Carbon Quantum Dots and Polydopamine[J]. ACS Appl Mater Interf, 2020, 12(1): 580-590.
[27]Fan J, Luo J, Wan Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane[J]. J Membr Sci, 2017, 538: 68-76.
[28]Fan J, Luo J, Wan Y. Aquatic micro-pollutants removal with a biocatalytic membrane prepared by metal chelating affinity membrane chromatography[J]. Chem Eng J, 2017, 327: 1011-1020.
[29]Zhou F, Luo J, Song S, et al. Nanostructured Polyphenol-Mediated Coating: a Versatile Platform for Enzyme Immobilization and Micropollutant Removal[J]. Ind Eng Chem Res, 2020, 59(7): 2708-2717.
[30]罗建泉, 曹晓彤, 吴媛媛, 等. 基于“膜污染思维”的酶固定化方法及其应用[J]. 膜科学与技术, 2017, 37(03): 97-103.
[31]Luo J, Meyer A S, Mateiu R V, et al. Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating[J]. ACS Appl Mater Interf, 2014, 6(24): 22894-22904.
[32]Ren Z, Luo J, Wan Y. Highly permeable biocatalytic membrane prepared by 3D modification: Metal-organic frameworks ameliorate its stability for micropollutants removal[J]. Chem Eng J, 2018, 348: 389-398.
[33]周芳芳, 罗建泉, 陈向荣, 等. 生物催化膜用于微量有机污染物去除的研究进展[J]. 膜科学与技术, 2018, 38(06): 121-128.
[34]He Z, Mahmud S, Yang Y, et al. Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants[J]. Sep Purif Technol, 2020, 250: 117266.
[35]Wang C, Wu Y, Lu J, et al. Bioinspired Synthesis of Photocatalytic Nanocomposite Membranes Based on Synergy of Au-TiO2 and Polydopamine for Degradation of Tetracycline under Visible Light[J]. ACS Appl Mater Interf, 2017, 9(28): 23687-23697.
[36]Luo J, Song S, Zhang H, et al. Biocatalytic membrane: Go far beyond enzyme immobilization[J]. Eng Life Sci, 2020, DOI: 10.1002/elsc.202000018
[37]Mehrabi Z, Taheri-Kafrani A, Asadnia M, et al. Bienzymatic modification of polymeric membranes to mitigate biofouling[J]. Sep Purif Technol, 2020, 237: 116464.
[38]Kim T H, Lee I, Yeon K-M, et al. Biocatalytic membrane with acylase stabilized on intact carbon nanotubes for effective antifouling via quorum quenching[J]. J Membr Sci, 2018, 554: 357-365.
[39]Guha R, Xiong B, Geitner M, et al. Reactive micromixing eliminates fouling and concentration polarization in reverse osmosis membranes[J]. J Membr Sci, 2017, 542: 8-17.
[40]Duan X, Su C, Miao J, et al. Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals[J]. Appl Catal B: Environ, 2018, 220: 626-634.
[41]Li N, Chen G, Zhao J, et al. Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation[J]. J Membr Sci, 2019, 591: 117341

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号