耐污染超滤膜的研究进展
作者:侯春光,文剑平,庞志广,谢松辰,晋墩尚,李志霞,彭跃莲
单位: 北京市绿色催化与分离重点实验室,北京工业大学环境与生命学部,北京100124 ;北京碧水源科技股份有限公司,北京102206
关键词: 超滤膜;膜污染;耐污染机制;研究进展
出版年,卷(期):页码: 2021,41(2):157-168

摘要:
 超滤膜技术在饮用水净化、污水处理、海水淡化预处理等领域中得到了广泛应用。然而,膜污染是分离膜大规模应用的瓶颈,传统膜材料的固有性质导致膜表面与污染物之间存在强相互作用,从而造成严重的膜污染,尤其以超滤膜为甚。近年来,构筑抗污染特性的超滤膜得到广泛的研究。在这篇综述中,我们讨论了构筑耐污染特性超滤膜的策略及其局限性。重点概括了国内外在水合层效应和空间位阻效应(污染物抵制机制)、低表面能效应(污染物释放机制)、氧化分解效应(污染物攻击机制)、膜表面图案技术五种抗污策略指导下的膜研究进展。并对构筑耐污染超滤膜面临的主要挑战和发展方向进行了展望。
 Ultrafiltration technology has been developed rapidly in many fields such as water purification, sewage treatment, and seawater desalination. However, membrane fouling was one bottleneck of the large-scale application of membrane, especially in ultrafiltration. Due to the inherent properties of typical membrane materials, there were strong interactions between the membrane surface and pollutants, which resulted in serious membrane fouling. In recent years, anti-fouling membranes have been widely researched. In this review, we discussed anti-fouling strategies and limitations of ultrafiltration membranes. The hydration layer effect and steric hindrance effect (pollutants resistance mechanism), low surface energy effect (pollutants release mechanism), oxidation and decomposition of pollutants (pollutants attack mechanism), and membrane surface pattern technology were mainly introduced and summarized, as well as the research progress of anti-fouling membranes at domestic and overseas. Besides, the main challenges and development directions of anti-fouling ultrafiltration membranes were prospected.
侯春光(1995-06),男,籍贯:河南省项城市,硕士研究生,研究方向:毛细管超滤膜,E-mail:HouChunguang@emails.bjut.edu.cn

参考文献:
 [1]Elimelech M, Phillip W A. The Future of Seawater Desalination:Energy,Technology,and the Environment[J].ence,2011,333(6043):712-717.
[2]Xie M, Elimelech M,et al. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction[J]. Water Research,2016,89:210-221.
[3]Gao Wei, Li Guibai, et al. Membrane fouling control in ultrafiltration technology for drinking water production: A review[J].Desalination, 2011,272:1-3.
[4]Tadashi Uragami. Introduction to Membrane Science and Technology[J].Science and Technology of Separation Membranes,2017;pp.1-12.
[5] Seon Yeop Jung, Kyung Hyun Ahn, et al. Particlede position on the patterned membrane surface:Simulation and experiments[J].Desalination,2015,370:17-24.
[6]Chon Kangmin, Jong-Hoon Lee, et al. Evaluation of a membrane bioreactor and nanofiltration for municipal wastewater reclamation: Trace contaminant control and fouling mitigation[J]. Desalination,2011,272:128-134.
[7]Wang Jianxing, Wei Yuansong, et al. Fouling characteristics and cleaning strategies of NF membranes for the advanced treatment of antibiotic production wastewater[J]. Environmental ence & Pollution Research,2015,10:1-11.
[8]寇朝卫,张干伟,白仁碧.基于XDLVO理论解析膜法水处理过程中膜污染问题研究[J].膜科学与技术,2017,37:8-14.
[9]Liu Fu, et al. Progress in the production and modification of PVDF membranes[J].Fuel and Energy Abstracts,2011,375(1-2):1-27.
[10]Anke Nabe,  Eberhard Staude, et al. Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions[J].Journal of Membrane Science,1997,133:57-72.
[11]Zheng Jie,Jiang Shaoyi, et al. Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers[J].Langmuir,2004, 20,(20):8931-8938.
[12]Chen Shengfu, Yu Qiuming, et al. Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption[J].Langmuir,2006,22(19): 8186-818986.
[13]Hu J, et al. Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer Resolution[J]. Science,1995,268(5208):267-269.
[14]Phan A, Cole D R, et al. Molecular Structure and Dynamics in Thin Water Films at Metal Oxide Surfaces: Magnesium, Aluminum, and Silicon Oxide Surfaces[J].Energy & Environmental Science,2012,116(30):15962-15973. 
[15]Zhu C, Huang Y, et al. Microscopic Insight into Surface Wetting: Relations between Interfacial Water Structure and the Underlying Lattice Constan[J].Physical Review Letters, 2013,110(12):336-337.
[16] Yan N, Wang Y, et al. Highly permeable membranes enabled by film formation of block copolymers on water surface[J].Journal of Membrane Science,2018,568:40-46.
[17] Zhao Y, Zhang S, et al. Enhanced both water flux and salt rejection of reverse osmosis membrane through combining isophthaloyl dichloride with biphenyl tetraacyl chloride as organic phase monomer for seawater desalination[J].Journal of Membrane Science, 2017,522:175-182. 
[18]Xu F, Wang Y, et al. Water flow through interlayer channels of two-dimensional materials with various hydrophilicities[J].Journal of Physical Chemistry C,2018,122:15772-15779.
[19]Aoze Miao, Wang Yong, et al. Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations[J].Journal of Membrane Science,2020 604,11:80-87.
[20]Zhang X, Tang CY, et al. In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly(arylene ether sulfone) for antifouling in emulsified oil/water separation[J].Journal of Membrane Science,2017,527:26-34.
[21]Prity Bengani-Lutz, P Bengani-Lutz, et al. Extremely fouling resistant zwitterionic copolymer membranes with ~1nm pore size for treating municipal, oily and textile wastewater streams[J].Journal of Membrane Science,2017,543:184-194.
[22]Prity Bengani, Ayse Asatekin, et al. Zwitterionic copolymer selfassembly for fouling resistant, high flux membranes with sizebased small molecule selectivity[J].Journal of Membrane Science,2015,493:755-65.
[23]Yang X, Chen Q, et al. Bio-inspired method for preparation of multiwall carbonnanotubes decorated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation[J]. Chemical Engineering Journal,2017,321:245-256.
[24]Fan L, Yang Z, et al. Improving permeation and antifouling performance of polyamide nanofiltration membranes through the incorporation of arginine[J].ACS Appl Mater Interfaces,2017,9,(15):13577-13586.
[25]Li Mu, Zhang Wanyu, et al. Hydrophilic and antifouling modification of PVDF membranes by one-step assembly of tannic acid and polyvinylpyrrolidone[J]. Applied Surface Science,2019,483:967-978.
[26]Harris L G, Wieland M, et al. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers [J].Biomaterials,2004,25:4135-4148.
[27]Lemarchand C, Passirani C, et al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems[J]. Biomaterials, 2006, 27:108-118. 
[28]Beyer M, Ralf Bischoff F, et al. Novel glass slide -based peptide array support with high functionality resisting non-specific protein adsorption[J]. Biomaterials, 2006, 27:3505-3514.
[29]Inutsuka M, Yokoyama H, et al. High Density Polymer Brush Spontaneously Formed by the Segregation of Amphiphilic Diblock Copolymers to the Polymer/Water Interface[J].ACS Macro Lett,2013,2:265-268. 
[30]Taihei Aoki, Hideaki Yokoyama, et al.. Adhesion Force Analysis of Dynamic Polymer Brushes[J].Langmuir,2020,36:6210-6215.
[31]Koutsos V, Hadziioannou G, et al. Direct View of Structural Regimes of End-Grafted Polymer Monolayers: A Scanning Force Microscopy Study[J].Macromolecules,1999,32:1233-1236. 
[32]Nakayama Y, Matsuda T. Surface Macromolecular Architectural Designs Using Photo-Graft Copolymerzation Based on Photochemistry of Benzyl N,N-Diethyldithiocarbamate[J]. Macromolecules,1996,29:8622−8630.
[33]Zhang Heng, Yuan Shiling, et al. Molecular Dynamics Simulations of Surface Hydration Layers Near Non-fouling Polymer Membranes[J].Acta Chim Sinica,2013, 71:649-656.
[34]Jiang Jinhong, Xu Youyi, et al. Antifouling and Antimicrobial Polymer Membranes Based on Bioinspired Polydopamine and Strong Hydrogen-Bonded Poly(N?vinylpyrrolidone[J].ACS Appl.Mater.Interfaces,2013,5:12895-12904.
[35]Wang Ning, Hu Yunxia, et al. Tailoring Membrane Surface Properties and Ultrafiltration Performances via the Self-Assembly of Polyethylene Glycol-block-Polysulfone-block-Polyethylene Glycol Block Copolymer upon Thermal and Solvent Annealing[J].ACS Appl. Mater.Interfaces,2017,9:31018-31030.
[36]S Y Park, S Y Kwak, et al. Regenerable anti-fouling active PTFE membrane with thermo-reversible “peel-and-stick” hydrophilic layer[J]. Journal of Membrane Science,2015,491:1-9.
[37]Van Camp W, Willet N, et al. Poly(acrylic acid) with disulfide bond for the elaboration of pH-responsive brush surfaces[J].European Polymer Journal,2010,46:195-201.
[38]Marlène Lejars, Christine Bressy, et al.. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings[J].Chemical Reviews,2012,112(8):4347-90. 
[39]Zhao J, Pan F, et al. Biomimetic and bioinspired membranes: Preparation and application[J]. Progress in Polymer Science,2014,39:1668-1720.
[40]Baier R E, Surface behaviour of biomaterials: the theta surface for biocompatibility[J].J Mater Sci,2006,17:1057-1062.
[41]Sommer S, Callow J A, et al. A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers[J]. Biofouling,2010,26:961-972.
[42]曲爱兰,文秀芳,杨卓如, et al.超疏水涂膜的研究进展[J].化学进展,2006,18:1434-1439.
[43]Zhao X, Liu Y, et al. Fabrication of antifouling polymer-inorganic hybrid membranes through the synergy of biomimetic mineralization and nonsolvent induced phase separation[J]. Journal of Materials Chemistry A,2015,3:7287-95.
[44]Wang Z, Lin S.The impact of low-surface-energy functional groups on oil fouling resistance in membrane distillation[J]. Journal of Membrane Science,2017,527:68-77.
[45]Dong-Gyun Kim, Jong-Chan Lee, et al. Dual E?ective Organic/Inorganic Hybrid Star-Shaped Polymer Coatings on Ultrafiltration Membrane for Bio- and Oil-Fouling Resistance[J].ACS Appl.Mater.Interfaces, 2012,4:5898-5906.
[46]X Zhao, Z Jiang, et al. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property[J]. Journal of Membrane Science,2012,415-416:824-834. 
[47]Li Y, Jiang Z, et al. Surface fluorination of polyamide nanofiltration membrane for enhanced antifouling property[J]. Journal of Membrane Science,2014,455:15-23. 
[48]N R Khalid, Sadia Khalid, et al. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review[J]. Ceramics International,2017, 43:14552-14571.
[49]Raffaele Molinari, et al. Pietro Argurio. Recent progress of photocatalytic Membrane reactors in water treatment and in synthesis of organic compounds: A review[J].Catalysis Today,2017,281:144-164.
[50]Fu Jingli, Liguo Wang, et al. Photocatalytic ultrafiltration membranes based on visible light responsive photocatalyst:a review[J]. Desalination and Water Treatment. 2019,21:1-14.
[51]Samsudin MFR, Ong W J, et al. Photocatalytic degradation of real industrial poultry wastewater via platinum decorated BiVO4/g-C3N4 photocatalyst under solar light irradiation[J]. Journal Photochem Photobiol A Chem,2019,378:46-56.
[52]Molinari R, Schiavello M, et al. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification[J]. Journal of Membrane Science, 2002,206:399-415.
[53]Ong C S, et al. Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process[J].Desalination, 2014,353:48-56.
[54]Hatat Fraile M, Arlos M J, et al. Concurrent photocatalytic and filtration processes using doped TiO2 coated quartz fiber membranes in a photocatalytic membrane reactor[J]. Chemical Engineering Journal,2017,30:531-540.
[55]Leong S, Wang K, et al. TiO2 based photocatalytic membranes: a review[J]. Journal of Membrane Science,2014,472:167-184.
[56]Starr B J, Herrera-Robledo M, et al. Coating porous membranes with a photocatalyst: comparison of LbL self-assembly and plasma-enhanced CVD techniques[J]. Journal of Membrane Science,2016,514:340-349.
[57]R Molinari, T Poerio, et al. Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst[J]. Journal of Membrane Science,2008,319:54-63.
[58]Yu S, Sun F, et al. Novel mpg-C3N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation[J]. Chemical Engineering Journal,2018,337:183-192.
[59]Luisa M, Pastrana-Mart?´nez, et al. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water[J].water research,2015,77:179-190.
[60]H K Melvin Ng, A Z Abdullah. Selective removal of dyes by molecular imprinted TiO2 nanoparticles in polysulfone ultrafiltration membrane[J]. Journal of Environmental Chemical Engineering,2017,5:3991-3998.
[61]K Fischer, A Schulze, et al. Photocatalytic degradation and toxicity evaluation of diclofenac by nanotubular titanium dioxide–PES membrane in a static and continuous setup[J]. RSC Advances,2015,5:16340-16348.
[62]Zhang H, Kang P, et al. Ag nanocrystalsdecorated-g-C3N4/Nafion hybrid membranes: One-step synthesis and photocatalytic performance[J].Mater Lett,2018,213:218-221.
[63]Bojarska M, Skowroński J, et al. Growth of ZnO nanowires on polypropylene membrane surface-characterization and reactivity[J].Applied Surface Science,2016,391:457-467.
[64]Konstantinos V Plakas, Anastasios J Karabelas, et al. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters[J].Chemical Engineering Journal,2014,239:299-311.
[65]Cordeiro A L, Werner C. Enzymes for Antifouling Strategies[J]. Journal of Adhesion Science and Technology.2011,25:2317-2344.
[66]Anbharasi Vanangamudi, Yang Xing. Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning[J].ACS Appl Mater Interfaces,2018,10: 27477-27487.
[67]Schulze A, Prager A, et al. Bio-Inspired Polymer Membrane Surface Cleaning[J]. Polymers,2017,9(3):97.
[68]Culfaz P Z, Blue mich, B, et al. Fouling behavior of microstructured hollow fiber membranes in dead-end filtrations: critical flux determination and NMR imaging of particle deposition[J].Langmuir,2011,27(5):1643-1652. 
[69]M R Bilad, X Yan, et al. Treatment of molasses wastewater in a membrane bioreactor: influence of membrane pore size[J], Separation and Purification Technology,2011,78:105-112. 
[70]Jehad A Kharraz, Hassan A Arafat, et al. Simple and effective corrugation of PVDF membranes for enhanced MBR performance[J].Journal of Membrane Science,2015,475:91-100.
[71]ElSherbiny, Khalil, et al. Ulbricht M. Surface micro-patterning as a promising platform towards novel polyamide thin-film composite membranes of superior performance[J]. Journal of Membrane Science,2017,529:11-22.
[72]Jiang Zhiwei, Santanu Karan, et al. Membrane Fouling: Does Microscale Roughness Matter?[J]. Industrial & Engineering Chemistry Research,2020,59:5424-5431.
[73]T Femmer, M Wessling, et al. E?cient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers[J],Lab Chip,2015,15:3132-3137. 
[74]S Pawlowski, S Velizarov, et al. Computational fluid dynamics (CFD) assisted analysis of profiled membranes performance in reverse electrodialysis[J], Journal of Membrane Science,2016,502:179-190.
[75]Jehad A Kharraz, et al. Simple and effective corrugation of PVDF membranes for enhanced MBR performance[J].Journal of Membrane Science.2015,475:91-100.
[76]Zhao Liman, Wang Jun, et al. Layer-by-Layer-Assembled antifouling films with surface microtopography inspired by Laminaria japonica[J].Applied Surface Science,2020,511,14:55-64.
[77]Dong Chan Choi, Chung Hak Lee, et al. Effect of Pattern Shape on the Initial Deposition of Particles in the Aqueous Phase on Patterned Membranes during Crossflow Filtration[J].Environmental Science Technology Letters, 2017,4:66−70.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号