氧化石墨烯量子点改性海藻酸钠复合杂化膜的制备
作者:姚路路,唐林,万云云,崔鹏
单位: 合肥工业大学 化学与化工学院,安徽省可控化学与材料化工重点实验室,安徽 合肥 230009
关键词: 氧化石墨烯量子点;海藻酸钠;复合杂化膜;渗透汽化;异丙醇;脱
出版年,卷(期):页码: 2021,41(3):89-97

摘要:
 自制氧化石墨烯量子点(GOQDs)分散于海藻酸钠(SA)溶液中,涂覆在多孔尼龙膜支撑层上,制备GOQDs改性SA复合杂化膜。研究了GOQDs的加入对膜结构、形貌、表面亲水性、溶胀性和渗透汽化性能的影响。结果表明,复合杂化膜对异丙醇溶液具有明显的渗透汽化脱水作用,GOQDs含量为2 wt%的膜性能最优,该膜对温度为50℃,水含量为10 wt%的异丙醇溶液表现出渗透通量和分离因子分别为1130±51 g/(m2⋅h)、2241±73,分别是海藻酸钠膜的1.41倍和5.90倍,渗透汽化分离指数PSI为2.53×106 g/(m2⋅h),比海藻酸钠膜提高了8倍。操作温度的升高会提高膜的分离因子和通量,进料液浓度的增大会使膜的通量显著变大。过量的GOQDs不会对膜渗透汽化脱水产生显著的阻碍作用。
 In this paper, self-made graphene oxide quantum dots (GOQDs) were mixed with sodium alginate (SA) polymer homogeneously and the mixture was used to made composite hybrid membrane with polyporous nylon membrane as substrate. The influence to the structure, morphology, surface hydrophilic, swelling degree and pervaporation properties of GOQDs content in the membrane has been discussed in this paper. It can be seen that, SA-GOQD composite hybrid membranes showed excellent pervaporation dehydration properties of isopropanol aqueous. The optimized GOQDs content in membrane was 2 wt%. Here pervaporation flux and separation factor were 1130±51g/(m2⋅h) and 2241±73, the pervaporation separation index (PSI) was 2.53×106 g/(m2⋅h) at 50 oC and 10 wt% water in the feed. These resulted in an increase over the SA control membrane of 1.41-fold, 5.90-fold and more than 8-flod. The flux and separation factor showed increased with temperature elevated at same time. While flux can be improved obviously by higher water content in the feed. It’s not liable to produce the water molecules penetration effect with too much GOQDs, which usually happened as excessive GO accumulation.
姚路路(1980-),男,安徽淮南人,博士,高级实验师,合肥工业大学,研究方向为膜分离技术

参考文献:
 [] Dharupaneedi S P, Anjanapura R V, Han J M, et al. Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation [J]. Ind Eng Chem Res, 2014, 53: 14474-14484.
[] Raeisi Z, Moheb A, Sadeghi M, et al. Tianate nanotubes-incorporated poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixture [J]. Chem Eng Res Des, 2019, 145: 99-111.
[] Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes [J]. Science, 2012, 335(6067): 442-446.
[] 汪林,纪树兰,王乃鑫,等. 用于有机溶剂体系分离的氧化石墨烯复合膜的构筑[J]. 膜科学与技术,2020, 40(1): 352-359.
[] Hung W S, Chang S M, Lecaros, et al. Fabrication of hydrothermally reduced graphene oxide/chitosan composite membranes with a lamellar structure on methanol dehydration [J]. Carbon, 2017, 117: 112-119.
[] Cao K T, Jiang Z Y, Zhao J, et al. Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides [J]. J Membr Sci, 2014, 469: 272-283.
[] Chi C L, Wang X R, Peng Y W, et al. Facile preparation of graphene oxide membranes for gas separation [J]. Chem Mater, 2016, 28(9): 2921-2927.
[] Wang J Q, Zhang P, Liang B, et al. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment [J]. ACS appl Mater Inter, 2016, 8(9): 6211-6218.
[] Kim H J, Choi Y S, Lim M Y, et al. Reverse osmosis nanocomposite membranes containing graphene oxides coated by tannic acid with chlorine-tolerant and antimicrobial properties [J]. J Membr Sci, 2016, 514: 25-34.
[] Guan K C, Liang F, Zhu H P, et al. Incorporating graphene oxide into alginate polymer with a cationic intermediate to strengthen membrane dehydration performance [J]. ACS appl Mater Inter, 2018, 10(16): 13903-13913.
[] Sun P Z, Zhang F, Zhu M, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation--π interactions [J]. ACS Nano, 2014, 8(1): 850-859.
[] Wang Y F, Hu A G. Carbon quantum dots: synthesis, properties and applications [J]. J Mater Chem C, 2014, 2(34): 6921-6939.
[] Dong Y Q, Shao J W, Chen C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by turning the carbonization degree of citric acid [J]. Carbon, 2012, 50: 4738-4743.
[] Wang M R, Pan F S, Yang L X, et al. Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration [J]. J Membr Sci, 2018, 563: 903-913.
[] Lecaros R L G, Deseo K M, Huang W S, et al. Infulence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane [J]. J Membr Sci, 2019, 576: 36-47.
[] 那沙沙,李卫星,邢卫红. 无机杂化海藻酸钠渗透汽化膜的制备与分离性能对比[J]. 化工学报,2016, 67(9): 3730-3737.
[] 刘琨,胡志明,方星,等. 硬脂酸改性γ-Al2O3填充PEBAX膜渗透汽化分离苯胺[J]. 高校化学工程学报,2018, 32(2): 319-329.
[] 姚路路,叶辉,宋影,等. 水性聚氨酯渗透蒸发分离苯/环己烷的条件及过程[J]. 化工学报,2016, 67(S1): 289-295.
[] Wang M R, Wu H, Jin X T, et al. Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions [J]. Chem Eng Sci, 2018, 178: 273-283.
[] Cao B X, Jiang Z Y, Liu G H, et al. Enhanced pervaporation performance of hybrid membrane by incorporation amphiphilic carbonaceous material [J]. J Membr Sci, 2016, 520: 951-963.
[] Zhao J, Zhu Y W, He G W, et al. Incorporating zwitterionic graphene oxides into sodium alginate membrane for efficient water/alcohol separation [J]. ACS appl Mater Inter, 2016, 8(3): 2097-2103.
[] 李小晴,李杰,王乃鑫,等. PEC/g-C3N4杂化膜的制备及其渗透汽化性能研究[J]. 膜科学与技术,2020, 40(2): 67-74.
[] Toti U S, Aminabhavi T M. Pervaporation separation of water-isopropylalcohol mixtures with blend membranes of sodium alginate and poly(acrylamide)-grafted guar gum[J]. J Appl Polym Sci, 2002, 85: 2014-2024.
[] Kariduraganavar M Y, Kittur A A, Kulkarni S S, et al. Development of novel pervaporation membranes for the separation of water–isopropanol mixtures using sodium alginate and NaY zeolite[J]. J Membr Sci, 2004, 238: 165-175.
[] Toti U S, Aminabhavi T M. Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures[J]. J Membr Sci, 2004, 228: 199-208.
[] Sajjan A M, Kumar B K J, Kittur A A, et al. Kariduraganavar, M.Y. Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol[J]. J Memb Sci, 2013, 425–426: 77–88.
[] Adoor S G, Rajineekanth V, Nadagouda M N, et al. Exploration of nanocomposite membranes composed of phosphotungstic acid in sodium alginate for separation of aqueous-organic mixtures by pervaporation[J]. Sep Purif Technol, 2013, 8: 483-493.
[] Choudhari S K, Premakshi H G, Kariduraganavar M Y. Development of novel alginate–silica hybrid membranes for pervaporation dehydration of isopropanol[J]. Polym Bull, 2016, 73: 743–762.
[] Bhat S D, Naidu B V K, Shanbhag G V, et al. Mesoporous molecular sieve (MCM-41)-filled sodium alginate hybrid nanocomposite membranes for pervaporation separation of water-isopropanol mixtures[J]. Sep Purif Technol, 2020, 49: 56-63.
[] Premaksi H G, Kariduraganavar M Y, Mitchell G R. Crosslinked nanocomposite sodium alginate-based membranes with titanium dioxide for the dehydration of isopropanol by pervaporation[J]. Molecules, 2020, 25: 1298.
[] Dmitrenko M, Liamin V, Kuzminova A, et al. Novel Mixed Matrix Sodium Alginate–Fullerenol Membranes: Development, Characterization, and Study in Pervaporation Dehydration of Isopropanol[J]. Polymers, 2020, 12: 864.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号