吸附功能膜研究进展
作者:郝爽,贾志谦,杨禹,黄海鸥,门毅
单位: 1北京师范大学 化学学院,北京 100875;2北京师范大学 环境学院,北京 100875
关键词: 吸附功能膜;膜吸附;研究进展
出版年,卷(期):页码: 2021,41(3):162-168

摘要:
 吸附功能膜是指键合吸附功能基团或者负载吸附剂颗粒的多孔膜,是一种较为新颖的吸附剂材料,主要用于水溶性微量污染物的富集,具有吸附/脱附速率快、处理效率高、能耗低、易于实现放大、吸附剂流失率低、便于回收等优点。本文介绍了吸附功能膜的种类(包括均质膜、混合基质膜、复合膜和分子印迹膜等),制备方法及其在水处理、生化产品分离、固相萃取等方面的应用,并对其存在问题和发展方向进行了分析。
  Adsorptive membranes combine both advantages of adsorption and membrane separation, exhibiting high flow rates, low internal diffusion resistance and fast adsorption/desorption rates. In this review, the latest progress in the preparation of adsorptive membranes (including homogenous membranes, mixed matrix membranes, and composite membranes), and their applications in water treatment, separation of biochemical products, and solid-phase extraction were surveyed. Challenges and future outlooks in adsorptive membranes were discussed. 
郝爽(1994-),女,天津,博士研究生,分离膜的制备与性能研究

参考文献:
 [1] A. Zwolak, M. Sarzyńska, E. Szpyrka, K. Stawarczyk, Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: a Review, Water Air Soil Pollut.,2019, 230:164.
[2] R. Zahorán, Á. Kukovecz, Á. Tóth, D. Horváth, G. Schuszter, High-speed tracking of fast chemical precipitations, Phys. Chem. Chem. Phys. 2019, 21:11345-11350.
[3] J. Gao, L. Hou, G. Zhang, P. Gu, Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution, J. Hazard. Mater. 2015,286:325-333.
[4] F. Han, G. Zhang, P. Gu, Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration, J. Hazard. Mater. 2012,225-226:107-113.
[5] Z.Q. Huang, Z. Cheng, Recent advances in adsorptive membranes for removal of harmful cations, J. Appl. Polym. Sci. 2019,137:48579.
[6] K.C. Khulbe, T. Matsuura, Removal of heavy metals and pollutants by membrane adsorption techniques, Applied Water Science 2018,8:19.
[7] A.M. Nasir, P.S. Goh, M.S. Abdullah, B.C. Ng, A.F. Ismail, Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges, Chemosphere. 2019,232: 96-112.
[8] R.C Smith, L.I Jinze, S. Padungthon, Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for sorption/desorption of target ligands, Front. Environ. Sci. Eng. 2015, 9:929-938.
[9] S.J. Ergas, D.E. Rheinheimer, Drinking water denitrification using a membrane bioreactor, Water Res. 2004, 38: 3225-3232.
[10] Y.S. Lin, Microporous and dense inorganic membranes: Current status and prospective, Sep. Purif. Technol. 2001,25:39-55.
[11] A. Ali, A. Ahmed, A. Gad, Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration, Water Sci. Technol. 2017: 439-450.
[12] Bhave, R. R., Inorganic Membranes Synthesis, Characteristics and Applications. 1991 
[13] Verweij, Hendrik, Inorganic membranes, Current Opinion in Chemical Engineering. 2012,1:156-162.
[14] M. Ulbricht, Advanced functional polymer membranes, Polymer. 2006,47:2217-2262.
[15] D. Discher, H. Bermudez, H. Arandaespinoza, Pore stability and dynamics in polymer membranes, Epl. 2002,64 :550.
[16]A.Stein, B.J.Melde, R.C.Schroden, Hybrid Inorganic–Organic Mesoporous Silicates— Nanoscopic Reactors Coming of Age, Adv. Mater. 2000,12:1403-1419.
[17] R. Logithkumar, A. Keshavnarayan, S. Dhivya, A. Chawla, S. Saravanan, N. Selvamurugan, A review of chitosan and its derivatives in bone tissue engineering, Carbohydr. Polym. 2016,151: 172-188.
[18] Y.G. Abou El-Reash, A.M. Abdelghany, A.A. Elrazak, Removal and Separation of Cu(II) from Aqueous Solutions Using Nano-Silver Chitosan/Polyacrylamide Membranes, Int. J. Biol. Macromol. 2016,86:789-798.
[19] T. Hu, C. Chang, L. Zhang, Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway, Chem. Eng. J. 2011,173:689-697.
[20] M. Kumar, R. Shevate, R. Hilke, K.V. Peinemann, Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal, Chem. Eng. J. 2016,301 : 306-314.
[21] 李妍, 周晓吉, 沈舒苏. 一种两亲性共聚物的合成及其对PVDF膜的改性研究,膜科学与技术, 2016, 36(006):70-77.
[22] S. Hao, Y. Geng, Z. Jia, UV pre-activation/thermal initiated grafting of caffeic acid on PVDF for preparation of adsorptive membranes for cesium, React. Funct. Polym. 2018 , 132: 120-126.
[23] 林松柏, 欧阳娜, 柯爱茹. 接枝改性羧甲基纤维素对铜离子的吸附研究. 离子交换与吸附, 2008, 24(005):442-450.
[24] S. Hao, Z. Jia, Progress in adsorptive membranes for separation—a review, Sep. Purif. Technol., 2020, 255.
[25] N.Wang,S.Ji,Poly(vinyl alcohol)-graphene oxide nanomixed matrix“pore-filling”membrane for pervaporation of toluene/n-heptane mixtures, J. Membr. Sci. 2014,455:113-120.
[26] Y. Guo, Z. Jia, M. Cao, Surface modification of graphene oxide by pyridine derivatives for copper(II) adsorption from aqueous solutions, J. Ind. Eng. Chem. 2017,53:325-332.
[27] Z. Hua, P.F. Lv, W. Xia, W. Di, D.G. Yu, Electrospun poly(2-aminothiazole)/cellulose acetate fiber membrane for removing Hg(II) from water, J. Appl. Polym. Sci. 2017,134:44879.
[28]蔡佳亮, 黄艺, 郑维爽. 生物吸附剂对废水重金属污染物的吸附过程和影响因子研究进展, 农业环境科学学报, 2008, 27(004):1297-1305.
[29] A.E. Navarro, N.A. Cuizano, J.C. Lazo, M.R. Sun-Kou, B.P. Llanos, Comparative study of the removal of phenolic compounds by biological and non-biological adsorbents, J. Hazard. Mater. 2009,164 :1439-1446.
[30] Y. Guo, Z. Jia, Sandwiched Zr (Ⅳ)-based coordinate porous materials membranes for adsorption of copper(Ⅱ) from water, Mater. Lett. 2018,228:239-241.
[31] J.Lin,Z.Cui. Modification of thermoplastic polyurethane nanofiber membranes by in situ polydopamine coating for tissue engineering, Journal of Applied Polymer ence, 2020, 137(41): 49252.
[32] Z. Jia, X. Cheng, Y. Guo, L. Tu, In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions, Chem. Eng. J. 2017,325:513-520.
[33] Z. Jia, S. Hao, X. Cheng, Fabrication of Prussian blue/polydopamine layers on polyacrylonitrile membranes for efficient adsorption of cesium., Desalin. Water Treat. 2019,163:125-113.
[34]J.He,X. Cai, Performance of a novelly-defined zirconium metal-organic frameworks adsorption membrane in fluoride removal. J. Colloid Interface Sci. 2016, 484:162-172.
[35] E. Klein, Affinity membranes: A 10-year review, J. Membr. Sci. 2000,179:1-27.
[36] J. Liu, C. Xin, Z. Shao, Z. Ping, Preparation and Characterization of Chitosan/Cu(II) Affinity Membrane for Urea Adsorption, J. Appl. Polym. Sci. 2003,90:1108-1112.
[37] W. Wang, H. Zhang, Z. Zhang, M. Luo, D. Wang, Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin, Colloids Surf. B. 2016, 150:271-278.
[38] R.Cheng, M. Kang, Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA. J. Hazard. Mater. 2019,364:645-653
[39] S. Konishi, K. Saito, S. Furusaki, T. Sugo, Binary metal-ion sorption during permeation through chelating porous membranes, J. Membr. Sci. 1996,111:1-6.
[40] K. Saito, K. Saito, K. Sugita, M. Tamada, T. Sugo, Convection-aided collection of metal ions using chelating porous flat-sheet membranes, J. Chromatogr. A. 2002,954:277-283.
[41] Q. Gu, Z. Jia, Preparation of quaternized poly(vinylidene fluoride) membranes by γ-ray irradiation induced graft polymerization and their antibacterial property, React. Funct. Polym. 2013, 73:1114-1121.
[42] Q.Gu, Z. Jia, Preparation of quaternized poly(vinylidene fluoride) membrane by surface photografting and its antifouling performance for alkaline proteins, Desalination, 2013, 317:175-183.
[43] M.M.H. Senna, Y.K. Abdel-Moneam, O.A. Gamal, A. Alarifi, Preparation of membranes based on high-density polyethylene graft copolymers for phosphate anion removal, J. Ind. Eng. Chem. 2013, 19:48-55.
[44] P. Tan, J. Sun, Y. Hu, Z. Fang, Q. Bi, Y. Chen, J. Cheng, Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes, J. Hazard. Mater. 2015,297:251-260.
[45] J.Y. Chen, S.R. Cao, C.X. Xi, Y. Chen, Z.Q. Chen, A novel magnetic β-cyclodextrin modified graphene oxide adsorbent with high recognition capability for 5 plant growth regulators, Food Chem. 2017,239:911.
[46] Z. Jia, M. Jiang, G. Wu, Amino-MIL-53(Al) Sandwich-Structure Membranes for Adsorption of p-Nitrophenol from Aqueous Solutions, Chem. Eng. J. 2016,307 : 283-290.
[47]Y. Guo, Z. Jia, Novel Sandwich Structure Adsorptive Membranes for Removal of 4-Nitrotoluene from Water, J. Hazard. Mater. 2016, 317: 295-302.
[48] F. Trotta, M. Biasizzo, F. Caldera, Molecularly Imprinted Membranes, Membranes. 2012, 1: 18-26.
[49] H.C. Jian, G.P. Li, Q.L. Liu, J.C. Ni, W.B. Wu, J.M. Lin, Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions, Chem. Eng. J. 2010,165:465-473.
[50] Z.K. Xu, X.J. Huang, L.S. Wan, Surface Engineering of Polymer Membranes, Advanced Topics in Science & Technology in China 2009.
[51] 张俐娜, 唐玉蓉. 纤维素/海藻酸钠共混离子交换膜对锶和镉的吸附, 第四届全国纤维素化学学术讨论会. 1998:56-57.
[52] P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, Selective Ion Penetration of Graphene Oxide Membranes, Acs Nano. 2013,7: 428-437.
[53] M.K. Liu, Effective Removal of Tetracycline Antibiotics from Water using Hybrid Carbon Membranes, Sci. Rep. 2017,7: 43717.
[54] 乔磊, 李旭, 叶卉. 膜吸附技术去除水中重金属离子, 山东化工, 2020, 049(005):225-227.
[55] C.Y.Zhu, Q. Wang, Study on extraction of penicillin G from fermentation liquor by emulsion liquid membrane method, Membrane science and technology. 2000,20:6.
[56] S. Hao, B.R. Yang, Y.C. Yin, Z. Jia, Octadecylsilyl-bonded silica based novel solid phase extraction membranes, Mater. Lett. 2019,240: 238-241.
[57] 王安栋, 董美美, 孙辉. 含大环化合物新型亲和膜的制备和吸附性能研究. 膜科学与技术, 2014, 34(003):53-55.
[58] 刘海, 高保娇, 孙世雄. 在聚砜膜表面接枝聚合对苯乙烯磺酸钠及接枝膜对两种含氮杂环类农药吸附特性的研究,膜科学与技术, 2015, 35(1):115-122.
[59] 吴翠明,孙夫建,王娜,徐铜文. BPPO中空纤维荷电镶嵌膜制备及其蛋白质吸附性能, 膜科学与技术, 2014, 34(001):67-70.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号