新型分盐纳滤膜的制备与表征
作者:史乐,刘四华,厍景国,阎安,王昌萌,武春瑞,吕晓龙
单位: 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院,天津工业大学,天津 300387
关键词: 中空纤维纳滤膜;界面聚合;高哌嗪;结构与性能;分盐
出版年,卷(期):页码: 2021,41(4):1-7

摘要:
 设计界面聚合反应单体结构,调节界面聚合反应参数,是实现纳滤膜结构和性能调控的有效手段。本研究针对Na2SO4/NaCl高效分离需求,以高哌嗪(HPIP)为水相单体,均苯三甲酰氯(TMC)为有机相单体,通过界面聚合反应制备了具有高Na2SO4/NaCl选择性的中空纤维纳滤膜。通过优化HPIP浓度,调节分离层的结构,可以实现纳滤膜分离性能的有效调控。当HPIP浓度为3g·L-1时,纳滤膜具有最佳的Na2SO4/NaCl选择性,该纳滤膜对Na2SO4和NaCl的截留率分别为98.0%和14.2%,Na2SO4/NaCl选择性为6.9,渗透通量为39.7 L·m-2·h-1。
  Designing the structure of the reactive monomer for interfacial polymerization and adjusting the parameters of interfacial polymerization are effective means to realize the regulation of the structure and performance of the nanofiltration membrane. Aiming at the requirement of efficient separation of Na2SO4/NaCl, a hollow fiber nanofiltration membrane which had high selectivity for Na2SO4/NaCl was prepared by interfacial polymerization using homopiperazine (HPIP) as the aqueous phase monomer and trimethyl chloride (TMC) as the organic phase monomer in this work. The separation performance of nanofiltration membrane can be effectively controlled by optimizing the concentration of HPIP and adjusting the structure of separation layer. The nanofiltration membrane has the best selectivity for Na2SO4/NaCl when the concentration of HPIP is 3g·L-1, the rejection for Na2SO4 and NaCl of which are 98.0% and 14.2%, respectively. The selectivity for Na2SO4/NaCl is 6.9, and the permeation flux is 39.7 L·m-2·h-1.
史乐(1996-),女,河北石家庄,硕士研究生,研究方向为复合纳滤膜研制;E-mail:shile2027@qq.com

参考文献:
  [1] 夏俊方.纳滤膜在高盐废水零排放应用中的分盐特征研究[J].工业用水与废水,2020,51(1): 28-31.
 [2] Van der BRUGGEN B, MÄNTTÄRI M, NYSTRÖM M. Drawbacks of applying nanofiltration and how to avoid them: A review[J]. Separation and Purification Technology, 2008,63(2): 251-263.
 [3] XU Y, LEBRUN R E, GALLO P, et al. Treatment of Textile Dye Plant Effluent by Nanofiltration Membrane[J]. Separation Science and Technology, 1999,34(13): 2501-2519.
 [4] OUMAR ANNE C, TRÉBOUET D, JAOUEN P, et al. Nanofiltration of seawater: fractionation of mono- and multi-valent cations[J]. Desalination, 2001,140(1): 67-77.
 [5] FANG W X, SHI L, WANG R. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability[J]. Journal of Membrane Science, 2014,468: 52-61.
 [6] KRIEG H M, MODISE S J, KEIZER K, et al. Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal[J]. Desalination, 2005,171(2): 205-215.
 [7] PAN Y Y, XU R P, LÜ Z H, et al. Enhanced both perm-selectivity and fouling resistance of poly(piperazine-amide) nanofiltration membrane by incorporating sericin as a co-reactant of aqueous phase[J]. Journal of Membrane Science, 2017,523: 282-290.
 [8] ZHANG Y J, ZHAO C W, ZHANG S F, et al. Preparation of SGO-modified nanofiltration membrane and its application in SO42− and Cl− separation in salt treatment[J]. Journal of Environmental Sciences, 2019,78: 183-192.
 [9] SHEN J N, YU C C, RUAN H M, et al. Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization[J]. Journal of Membrane Science, 2013,442: 18-26.
[10] LIU L F, HUANG X, ZHANG X, et al. Modification of polyamide TFC nanofiltration membrane for improving separation and antifouling properties[J]. RSC advances, 2018,8(27): 15102-15110.
[11] REN D, BI X T, LIU T Y, et al. Oligo-ethylene-glycol based thin-film composite nanofiltration membranes for effective separation of mono-/di-valent anions[J]. Journal of Materials Chemistry A, 2019,7(4): 1849-1860.
[12] FREGER V. Kinetics of Film Formation by Interfacial Polycondensation[J]. Langmuir, 2005,21(5): 1884-1894.
[13] Khorshidi B , Thundat T , Fleck B A , et al. A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes[J]. Scientific Reports, 2016, 6: 22069.
[14] WU C R, ZHANG S H, YANG D L, et al. Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane[J]. Journal of Membrane Science, 2009,326(2): 429-434.
[15] JI Y L, QIAN W J, AN Q F, et al. Mussel-inspired zwitterionic dopamine nanoparticles as building blocks for constructing salt selective nanocomposite membranes[J]. Journal of Membrane Science, 2019,572: 140-151.
[16] Tang C Y, Kwon Y N, Leckie J. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1-3):149-167.
[17] OH N W, JEGAL J, LEE K H. Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes[J]. Journal of applied polymer science, 2001,80(14): 2729-2736.
[18] YANG Z, WU Y C, GUO H, et al. A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: Separation performance enhancement and implications[J]. Journal of Membrane Science, 2017,544: 351-358.
[19] ZHANG Z, KANG G D, YU H J, et al. Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group[J]. Journal of Membrane Science, 2019,570-571: 403-409.
[20] YAO Z K, GUO H, YANG Z, et al. Preparation of nanocavity-contained thin film composite nanofiltration membranes with enhanced permeability and divalent to monovalent ion selectivity[J]. Desalination, 2018,445: 115-122.
[21] TAN Z, CHEN S F, PENG X S, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018,360(6388): 518-521.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号