燃料电池用新型复合质子交换膜研究进展
作者:谢玉洁1,张博鑫1,徐迪1,胡平2,刘勇1
单位: (1北京化工大学,材料科学与工程学院,北京100029;2清华大学,化工系,北京 100084)
关键词: 质子交换膜燃料电池;增强型;高温型;阻醇型;渗透
出版年,卷(期):页码: 2021,41(4):177-186

摘要:
 质子交换膜(PEM)被誉为质子交换膜燃料电池(PEMFC)的“心脏”,其性能的优劣会对PEMFC的性能、成本甚至寿命产生重要影响。单一材料制备的PEM大多难以满足PEMFC各方面高性能的要求,而由两种或两种以上材料组成的复合材料因可以同时具备两种物质的性能,近年来在PEM上的应用被广泛研究。本文综述了近年来国内外研究的增强型、高温型、阻醇型复合质子交换膜及一些具备特殊性能的复合质子交换膜,最后就复合质子交换膜研究领域现状对其发展前景展开了预测。
 The proton exchange membrane (PEM) is known as the "heart" of the proton exchange membrane fuel cells (PEMFC), and its properties will affect heavily the properties, cost and even lifespan of the PEMFC. PEM made of a single material can hardly meet the high requirements of PEMFC in all aspects, and composite materials composed of two or more materials can have the properties of multiple substances at the same time, the application of composite material on PEM has been widely studied in recent years. This article reviews the enhanced type, high temperature type, methanol blocking type composite proton exchange membranes and some composite proton exchange membranes with special properties that have been studied at home and abroad in recent years. Finally, combined with the recent research trends of composite proton exchange membrane, further prospects for its development are discussed.
谢玉洁,女,学生

参考文献:
 [1]Mohideen M M, Liu Y, Ramakrishna S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation[J]. Applied Energy, 2020, 257:114027.
[2]Li T Y, Wang K J, Wang J H, et al. Preparation of hierarchical-pore gas diffusion layer for fuel cell[J]. Journal of Materials Science, 2020, 55:4558–4569.
[3]李丹, 宋天丹, 康敬欣, 等. 燃料电池用质子交换膜的研究进展[J]. 电源技术, 2016, 40(10):2084-2087.
[4]Wang H, Wang X, Fan T, et al. Fabrication of electrospun sulfonated poly(ether sulfone) nanofibers with amino modified SiO2 nanosphere for optimization of nanochannels in proton exchange membrane[J]. Solid State Ionics, 2020, 349:115300.
[5]Liu G, Tsen W-C, Wen S. Sulfonated silica coated polyvinylidene fluoride electrospun nanofiber-based composite membranes for direct methanol fuel cells[J]. Materials & Design, 2020, 193:108806.
[6]Zhang X, Xia Y, Gong X, et al. Preparation of sulfonated polysulfone/sulfonated titanium dioxide hybrid membranes for DMFC applications[J]. Journal of Applied Polymer Science, 2020, 137(32):48938.
[7]Yuan C, Wang Y. The preparation of novel sulfonated poly(aryl ether ketone sulfone)/TiO2 composite membranes with low methanol permeability for direct methanol fuel cells[J]. High Performance Polymers, 2020:095400832095804.
[8]付凤艳, 张杰, 程敬泉, 等. 氧化石墨烯在燃料电池质子交换膜中的应用[J]. 化工进展, 2019, 38(05):2233–2241.
[9]成涛. 官能化石墨烯/磺化聚芳醚腈质子交换膜的制备与性能研究[D]. 成都:电子科技大学, 2019.
[10]Gil-Castell O, Santiago Ó, Pascual-Jose B, et al. Performance of Sulfonated Poly(Vinyl Alcohol)/Graphene Oxide Polyelectrolytes for Direct Methanol Fuel Cells[J]. Energy Technology, 2020, 8(7):2000124.
[11]Wang H, Sun N, Zhang L, et al. Ordered proton channels constructed from deoxyribonucleic acid-functionalized graphene oxide for proton exchange membranes via electrostatic layer-by-layer deposition[J]. International Journal of Hydrogen Energy, 2020, 45(51):27772–27778.
[12]Zhong S, Ding C, Gao Y, et al. Sulfonic Group-Functionalized Graphene Oxide-Filled Self-Cross-Linked Sulfonated Poly(ether ether ketone) Membranes with Excellent Mechanical Property and Selectivity[J]. Energy & Fuels, 2020, 34(9):11429–11437.
[13]Vikrant Y, Nagaraju N, Santoshkumar D B, et al. Insight toward the Electrochemical Properties of Sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) via Impregnating Functionalized Boron Nitride: Alternate Composite Polymer Electrolyte for Direct Methanol Fuel Cell[J]. ACS Applied Energy Materials, 2020, 3:7091−7102.
[14]Hu H, Ding F C, Ding H, et al. Sulfonated poly(fluorenyl ether ketone)/Sulfonated α-zirconium phosphate Nanocomposite membranes for proton exchange membrane fuel cells[J]. Advanced Composites and Hybrid Materials, 2020, 3:498–507.
[15]Pagidi A. Synthesis of highly stable PTFE-ZrP-PVA composite membrane for high-temperature direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45:7829-7837.
[16]董翠翠, 王艺洁, 孙进, 等. 硅烷偶联剂改性钛酸钡对SPEEK质子交换膜性能的影响[J]. 膜科学与技术, 2020, 40(04):55-61+71.
[17]Abu-Saied M A, El-Desouky E A, Soliman E A, et al. Novel sulphonated poly (vinyl chloride)/poly (2-acrylamido-2-methylpropane sulphonic acid) blends-based polyelectrolyte membranes for direct methanol fuel cells[J]. Polymer Testing, 2020, 89:106604.
[18]Nagar H, Sahu N, Basava Rao V V, et al. Surface modification of sulfonated polyethersulfone membrane with polyaniline nanoparticles for application in direct methanol fuel cell[J]. Renewable Energy, 2020, 146(2–11):1262–1277.
[19]Azman W, Jaafar J, Salleh W, et al. Highly selective SPEEK/ENR blended polymer electrolyte membranes for direct methanol fuel cell[J]. Materials Today Energy, 2020, 17:100427.
[20]徐达. 含氨基磺化聚芳醚酮砜类及其复合型质子交换膜的制备与性能研究[D]. 长春:长春工业大学, 2017.
[21]Liu B, Robertson G P, Kim D S, et al. Aromatic poly (ether ketone) s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes[J]. Macromolecules, 2007, 40 (6): 1934-1944.
[22]魏英聪. 纳米晶纤维素/磺化聚合物复合质子交换膜的制备及性能研究[D]. 长春:长春工业大学, 2017.
[23]Song T D, Chen Z Y, He H, et al. Orthogonal design study on factors affecting the diameter of perfluorinated sulfonic acid nanofibers during electrospinning[J]. Journal of Applied Polymer Science, 2015, 132(14):41755.
[24]Zhou X H, Zhu B S, Zhu X W, et al. Novel nanofiber-enhanced SPEEK proton-exchange membranes with high conductivity and stability[J]. Polymer, 2020, 210:123016.
[25]Rakhi S, Stefano G, Donnadio A, et al. Active electrospun nanofibers as an effective reinforcement for highly conducting and durable proton exchange membranes[J]. Journal of Membrane Science, 2021, 622:119037.
[26]Heo Y, Im H, Kim J. The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells [J]. Journal of Membrane Science, 2013, 425:11−22.
[27]Beydaghi H, Javanbakht M, Kowsari. Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs) [J]. Industrial & Engineering Chemistry Research, 2014, 53(43):16621-16632.
[28]李磊, 梁巍耀, 燕森博, 等. 金属有机骨架材料质子传导的研究进展[J]. 材料导报, 2018, 32(S2):39-43+54.
[29]孙炼, 王洪磊, 余金山, 等. 金属有机框架质子导体及其质子交换膜的研究进展[J]. 化学学报, 2020, 78(9):888-900.
[30]Hmadian-Alam L, Mahdavi H. A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells[J]. Renewable Energy, 2018, 126:630-639.
[31]Yamaguchi T, Nakao S, Kimura S. Plasma-Graft Filling Polymerization: Preparation of a New Type of Pervaporation Membrane for Organic Liquid Mixtures[J]. Macromolecules, 1991, 24:5522–5527.
[32]Zhang H W, Sheng P K. Recent Development of Polymer Electrolyte Membranes for Fuel Cells[J]. Chemical Review, 2012, 112:2780−2832.
[33]Miyake J, Kusakabe M, Tsutsumida A, et al. Remarkable Reinforcement Effect in Sulfonated Aromatic Polymers as Fuel Cell Membrane[J]. ACS Applied Energy Materials, 2018, 1:1233−1238.
[34]孙琨. 基于Nafion膜改性的新型质子交换膜的制备与表征[D]. 北京:北京交通大学, 2009.
[35]李雷. DMFC用增强型质子交换膜的制备研究[D]. 长沙:中南大学, 2009.
[36]Sood R, Cavaliere S, Jones D J, et al. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes[J]. Nano Energy, 2016, 26:729–745.
[37]Kim D J, Park C H, Nam S Y, et al. Molecular dynamics simulations of modified PEEK polymeric membrane for fuel cell application[J]. International Journal of Hydrogen Energy, 2016, 41:7641–7648. 
[38]Chen Y F, Guo H Y, Geng C B, et al. Effect of poly(ether ether ketone) and allyl compounds on microstructure and properties of bismaleimide[J]. Journal of Materials Science-Materials in Electronics, 2018, 30(2):991–1000.
[39]Zhang C Y, Yue X G, Yang Y C. Thin and methanol-resistant reinforced composite membrane based on semi-crystalline poly (ether ether ketone) for fuel cell applications[J]. Journal of Power Sources, 2020, 450:227664.
[40]Oshibaa Y, Tomatsua J, Takeo Y. Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells[J]. Journal of Power Sources, 2018, 394:67–73.
[41]Aili D, Henkensmeier D, Martin S, et al. Polybenzimidazole?Based High?Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress[J]. Electrochemical Energy Reviews, 2020, 3(4):793-845.
[42]Jiang S P. Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(21):7637-7655. 
[43]Escorihuela J, Olvera-Mancilla J, Alexandrova L, et al. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications[J]. Polymers, 2020, 12(9):1861.
[44]Asensio J A, Sanchez E M, Gomez R P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest[J]. Chemical Society Reviews, 2010, 39(8):3210-3239. 
[45]Wang J T, Lin W F, Weber M, et al. Trimethoxymethane as an alternative fuel for a direct oxidation PBI polymer electrolyte fuel cell[J]. Electrochim Acta, 1998, 43(24):3821-3828. 
[46]卢善富, 徐鑫, 张劲, 等. 燃料电池用磷酸掺杂高温质子交换膜研究进展[J]. 中国科学: 化学, 2017, 47(05):565-572. 
[47]Rao S S, Hande V R, Sawant S M, et al. Alpha -ZrP Nanoreinforcement Overcomes the Trade-Off between Phosphoric Acid Dopability and Thermomechanical Properties: Nanocomposite HTPEM with Stable Fuel Cell Performance[J]. ACS Applied Materials & Interfaces, 2019, 11(40):37013-37025.
[48]Mohammed H, Al-Othman A, Nancarrow P, et al. Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(6):4857-4869.
[49]Jiang Z J, Jiang Z, Tian X N, et al. Sulfonated holey graphene oxide (SHGO) filled sulfonated poly (ether ether ketone) membrane: the role of holes in the SHGO in improving its performance as proton exchange membrane for direct methanol fuel cells[J]. ACS Applied Materials & Interfaces, 2017, 9(23):20046-20056.
[50]Yusoff Y N, Loh K S, Wonh W Y, et al. Sulfonated graphene oxide as an inorganic filler in promoting the properties of a polybenzimidazole membrane as a high temperature proton exchange membrane[J]. International Journal of Hydrogen Energy, 2020, 45(51):27510-27526.
[51]Phang W J, Jo H, Lee W R, et al. Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation[J]. Angewandte Chemie-International Edition, 2015, 54(17):5142–5146. 
[52]Ramaswamy P, Wong N E, Gelfand B S, et al. A water stable magnesium MOF that conducts protons over 10-2 S/cm[J]. Journal of the American Chemical Society, 2015, 137:7640–7643.
[53]Escorihuela J, Sahuquillo O, Garcia-Bernabe A, et al. Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions[J]. Nanomaterials, 2018, 8(10):775.
[54]Li T Y, Xu Y L, Wang K J, et al. Preparation and performance of hydrophobic and conductive silica composite fiber membrane[J]. Journal of Material Science, 2020, 55:191–202.
[55]Muthuraja P, Prakash S, Shanmugam V M, et al. Stable nanofibrous poly(aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells[J]. Solid State Ionics, 2018, 317:201-209.
[56]Atanasov V, Lee A S, Park E J, et al. Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells[J]. Nature materials, 2020, https://doi.org/10.1038/s41563-020-00841-z.
[57]Mirfarsi S H, Parnian M J, Rowshanzamir S. Self-Humidifying Proton Exchange Membranes for Fuel Cell Applications: Advances and Challenges[J]. Processes, 2020, 8(9):1069.
[58]Swaghatha A, Cindrella L. Self-humidifying novel chitosan-geopolymer hybrid membrane for fuel cell applications[J]. Carbohydrate polymers, 2019, 223:115073.
[59]Park C H, Lee S Y, Hwang D S, et al. Nanocrack-regulated self-humidifying membranes[J]. Nature, 2016, 532(7600):480–483.
[60]Roy T, Wanchoo S K, Pal K. Novel sulfonated poly (ether ether ketone)/rGONR@TiO2 nanohybrid membrane for proton exchange membrane fuel cells[J]. Solid State Ionics, 2020, 349:115296.
[61]Wang L, Advani S G, Prasad A K. Self-healing composite membrane for proton electrolyte membrane fuel cell applications[J]. Journal of the Electrochemical Society, 2016, 163:F1267–F1271.
[62]Li Y X, Li Z, Wang W, et al. Self-healing and highly elastic fluorine-free proton exchange membranes comprised of poly (vinyl alcohol) derivative and phytic acid for durable fuel cells[J]. Science China Materials, 2020, 63(07):1235-1246.
[63]Yao Y, Lin Z, Li Y, et al. Superacidic electrospun fiber-Nafion hybrid proton exchange membranes[J]. Advanced Energy Materials, 2011, 1:1133–1140.
[64]Jia W, Tang B, Wu P. Novel composite proton exchange membrane with connected long-range ionic nanochannels constructed via exfoliated Nafion-boron nitride nanocomposite [J]. ACS Applied Materials & Interfaces, 2017, 9:14791–14800.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号