分离CO2的纳米材料/Pebax混合基质膜研究进展
作者:闫海龙,高缨佳,胡爱军,王 鹤,于 丹,李 卓,魏存花,刘红晶
单位: (1.沈阳工业大学 石油化工学院,辽宁省 辽阳市 111003; 2.沈阳工业大学 环境与化学工程学院,辽宁省 沈阳市 111000
关键词: MMMs;纳米金属氧化物;碳材料;MOFs
出版年,卷(期):页码: 2021,41(5):174-182

摘要:
 聚醚嵌段聚酰胺(Pebax)是一种极具潜力的聚合物气体分离膜材料,是CO2分离领域的研究热点。Pebax基CO2气体分离膜具有高渗透性和低选择性,难以突破trade-off上限。采用纳米材料和Pebax共同作用制备的混合基质膜(MMMs)提供了突破trade-off上限的可能。三种纳米填料,即纳米金属氧化物、有机金属框架(MOFs)、纳米碳材料常被作为填料加入到聚合物基质当中,可以利用纳米材料表面上的官能团或者形貌特征,在膜内构建气体传递的通道,实现对CO2的吸附传递。本文综述了Pebax基纳米填料MMMs的最新研究进展及其在气体分离方面的应用。最后,提出了该领域面临的挑战和发展方向。
 Polyether block polyamide (Pebax) as a highly potential polymer material in gas separation membrane, has been paid attention in the field of CO2 separation. The CO2 gas separation membrane based on Pebax has high permeability and low selectivity, and it is difficult to break the upper limit of trade-off. Mixed matrix membranes (MMMs) are prepared by inorganic materials and Pebax, which provides the possibility to break the upper limit of trade-off. Nano-metal oxides, organic metal frameworks (MOFs), and nano-carbon materials are often added into polymer materials as nano-fillers. Utilizing the functional groups or morphological features on the surface of the nanomaterials, a gas transfer channel is constructed in the membrane to realize the adsorption and transfer of CO2. In this paper, the latest research progress of Pebax-based nano-filler MMMs and their applications in gas separation
闫海龙(1997-),男,内蒙古赤峰人,硕士,气体分离膜,E-mail:1903760863@qq.com

参考文献:
 [1] Guan W, Dai Y, Dong C, et al. Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review[J]. Journal of Applied Polymer Science, 2020, 137(33):48968 (1-13). 
[2] Mo L I, Jiang X, Gao Hong H E. Application of membrane separation technology in postcombustion carbon dioxide capture process[J]. Frontiers of Chemical Science & Engineering, 2014, 8(2):233-239.
[3] Budd P, Msayib K, Tattershall C, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. Journal of Membrane Science, 2005, 251(1-2): 263-269.
[4] Sunitha K, Rani K Y, Moulik S, et al. Separation of NMP/water mixtures by nanocomposite Peba membrane: Part I. Membrane synthesis, characterization and pervaporation performance[J]. Desalination, 2013, 330:1-8.
[5] Ren X, Ren J, Hui L, et al. Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation[J]. International Journal of Greenhouse Gas Control, 2012, 8:111-20.
[6] Vinh-Thang H, Kaliaguine S. Predictive Models for Mixed-Matrix Membrane Performance: A Review[J]. Chemical Reviews, 2013, 113(7):4980-5028.
[7] Shengping, Wang, Suli, et al. Recent advances in capture of carbon dioxide using alkali-metal-based oxides[J]. Energy & Environmental Science, 2011, 4(10):3805-3819.
[8] Casarin M, Falcomer D, Vittadini A. A theoretical study of the interaction of CO2 with hydroxylated α-alumina[J]. Surface Science, 2004, 566;890-894.
[9] Merkei T, He Z, Pinnau I. Effect of Nanoparticles on Gas Sorption and Transport in Poly(1-trimeth -ylsilyl-1-propyne)[J]. Macromolecules, 2003, 36(18):6844-6855.
[10] Lara-Estevez J. PebaxTM-Silanized Al2O3 Composite. Synthesis and Characterization[J]. Open Journal of Polymer Chemistry, 2012, 02(2):63-69.
[11] Haipeng, Yuan, Jianwei, et al. Enhanced CO2/N2 separation performance by using dopamine/ polyethy -leneimine-grafted TiO2 nanoparticles filled Pebax mixed-matrix membranes[J], 2019, 214:78-86. 
[12] Bourlinos A, B., Ray, et al. Functionalized Nanostructures with Liquid‐Like Behavior: Expanding the Gallery of Available Nanostructures[J]. Advanced Functional Materials, 2010, 15(8):1285-1290.
[13] Yao D, Li T, Zheng Y, et al. Fabrication of a functional microgel-based hybrid nanofluid and its application in CO2 gas adsorption[J]. Reactive & Functional Polymers, 2019, 136:131-137.
[14] Dw A, Shan S A, Wz A, et al. CO2 selective separation of Pebax-based mixed matrix membranes (MMMs) accelerated by silica nanoparticle organic hybrid materials (NOHMs)[J]. Separation and Purification Technology, 2020,241:116708.
[15] Qiu S, Zhu G. Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties[J]. Coordination Chemistry Reviews, 2009, 253(23-24):2891-911.
[16] Venna S R, Carreon M A. Metal organic framework membranes for carbon dioxide separation[J]. Chemical Engineering Science, 2015,124:3-19.
[17] Wang B, Cote A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 2008, 453(7192):207-211.
[18] Park K, Ni Z, Cote A, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(27): 10186-10191.
[19] Czaja A U, Trukhan N, Mueller U. ChemInform Abstract: Industrial Applications of Metal-Organic Frameworks[J]. Cheminform, 2010, 40(29):1284-1293.
[20] Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9(2):172-178.
[21] Min K, Cohen S M. ChemInform Abstract: Discovery, Development, and Functionalization of Zr(IV)‐Based Metal-Organic Frameworks[J]. ChemInform, 2012, 43(32):4096-4104.
[22] 张贺, 李国良,张可刚,等.金属有机骨架材料在吸附分离研究中的应用进展[J]. 化学学报, 2017, 75:841-859. 
[23] 孙增智, 薛程, 宋莉芳,等. 金属有机骨架化合物的二氧化碳吸附性能的研究进展 [J]. 材料导报, 2019, 33(03): 541-549.
[24] Li X, Yu S, Li K, et al. Enhanced gas separation performance of Pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes[J]. Separation and Purification Technology, 2020, 248:117080.
[25] Jie Shen,  Liu G ,  Huang K , et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2016, 513:155-165. 
[26] 李亚男, 何文军, 杨为民. 新型纳米碳材料的应用新进展 [J]. 化工新型材料, 2014, (03):179-182.
[27] 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007, 21:77-82.
[28] Skoulidas A I, Ackerman D M, Johnson J K, et al. Rapid Transport of Gases in Carbon Nanotubes[J]. Physical Review Letters, 2002, 89(18):185901.
[29] Rao C, Subrahmanyam K S, Matte H R, et al. A study of the synthetic methods and properties of graphenes[J]. ence & Technology of Advanced Materials, 2010, 11(5):054502.
[30] Huang G, Isfahani A P, Muchtar A, et al. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture[J]. Journal of Membrane Science, 2018,565:370-379. 
[31] Habibiannejad S A, Aroujalian A, Raisi A. Pebax-1657 mixed matrix membrane containing surface modified multi-walled carbon nanotubes for gas separation[J]. Rsc Advances, 2016, 6(83):79563-79577.
[32] Zhu W, Qin Y, Wang Z, et al. Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation[J]. Journal of Energy Chemistry, 2019,31(04):1-10. 
[33] 秦云. Pebax基杂化膜制备及CO2分离性能研究 [D]. 石河子: 石河子大学, .2016.
[34] Ahmadpour E, Sarfaraz M V, Behbahani R M, et al. Fabrication of mixed matrix membranes containing TiO2 nanoparticles in Pebax1657 as a copolymer on an ultra-porous PVC support[J]. Journal of Natural Gas Science and Engineering, 2016,35:33-41. 
[35] Khosravanian A, Dehghani M, Pazirofteh M, et al. Grand Canonical Monte Carlo and Molecular Dynamics Simulations of the Structural Properties, Diffusion and Adsorption of Hydrogen Molecules through Poly(Benzimidazoles)/ Nanoparticle Oxides Composites [J]. International Journal of Hydrogen Energy, 2018, 43(5):2803-2816.
[36] Azizi, Navid, Mohammadi, et al. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/gamma-Al2O3 membrane for CO2/CH4 separation using response surface methodology[J]. Journal of Polymer Research, 2017, 24(5):67-82. 
[37] Nafisi V, Hgg M B. Development of dual layer of ZIF-8/Pebax-2533 mixed matrix membrane for CO2 capture [J]. Journal of Membrane Science, 2014, 459:244-255.
[38] Dong L, Chen M, Li J, et al. Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520:801-811.
[39] 丁锐. 纳米ZIF-8的尺度调控及其混合基质膜的CO2分离性能[D]. 大连: 大连理工大学,2018.
[40] Jomekian A, Behbahani R M, Mohammadi T, et al. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane[J]. Journal of Natural Gas Science & Engineering, 2016,31: 562-574.
[41] Meshkat S, Kaliaguine S, Rodrigue D. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax MH-1657 for CO2 separation[J]. Separation and Purification Technology, 2018, 200:177-190.
[42] Anahid, Sabetghadam, Xin lei, et al. Influence of Filler Pore Structure and Polymer on the Performance of MOF-based Mixed Matrix Membranes for CO2 Capture[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2018,24(31):7949-7956. 
[43] Sutrisna, Doddy P, Hou, et al. Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes[J]. Journal of Materials Chemistry, A Materials for energy and sustainability, 2018, 6(3):918-931.
[44] Jie S, Liu G, Kang H, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angewandte Chemie, 2015, 54(2):578-572..
[45] Shin J E, Lee S K, Cho Y H, et al. Effect of PEG-MEA and Graphene Oxide Additives on the Performance of Pebax®1657 Mixed Matrix Membranes for CO2 Separation[J]. Journal of Membrane Science, 2018, 572:300-308.
[46] Zhang Y, Shen Q, Hou J, et al. Shear-aligned graphene oxide laminate/Pebax ultrathin composite hollow fiber membranes using a facile dip-coating approach[J]. Journal of Materials Chemistry A, 2017, 5:7732-7737. 
[47] Wang S, Ye L, Huang S, et al. Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties[J]. Journal of Membrane Science, 2014, 460:62-70.
[48] Azizi N, Arzani M, Mahdavi H R, et al. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation[J]. Korean Journal of Chemical Engineering, 2017,34:2459-2470. 
[49] Zhao D, Ren J, LiI H, et al. Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes[J]. Journal of Membrane Science, 2014, 467:41-47.
[50] N Jamil, Othman N H, Shahrudin M Z,et al. Effects Of Pebax Coating Concentrations On CO2/CH4 Separation Of RGO/ZiF-8 PES Membranes[J]. Jurnal Teknologi, 2020, 82(2):51-60.
[51] Afshoun HR,Chenar M P, Moradi M R, et al. Effects of halloysite nanotubes on the morphology and CO2/CH4 separation performance of Pebax/polyetherimide thin‐film composite membranes[J]. Journal of Applied Polymer Science, 2020, 137(28):48860.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号