天然水背景下残余铝组分分析及其对纳滤膜污染的贡献
作者:袁梓屹12,李芸妃2,李天玉3,张建锋1,王小亻毛 2
单位: 1.西安建筑科技大学环境与市政工程学院,西安 710055;2.清华大学环境学院,环境模拟与污染控制国家重点联合实验室,北京 100084; 3.北京碧水源膜科技股份有限公司,北京 102206
关键词: 饮用水处理;纳滤;残余铝;膜污染
出版年,卷(期):页码: 2021,41(6):10-17

摘要:
 残余铝虽然已被广泛证实是造成饮用水处理纳滤膜污染加剧的关键污染物之一,但是到目前为止,尚不清楚残余铝中各组分对纳滤膜污染的影响规律和贡献率。本研究根据残余铝的产生机理,在不扰动实际水体初始状态的前提下,有效调控了纳滤进水中残余铝的种类分布,从残余铝的聚合度及其与有机物的络合程度两个方面对膜污染进行分析。结果显示,中高聚态铝(Alb/Alc)的浓度即使在200 μg/L的浓度条件下,也不会对膜污染速率产生明显影响,而低聚态铝(Ala)在50 μg/L的浓度范围内就能显著加剧膜污染。相比于Ala的浓度,Ala与天然有机物(NOM)的络合稳定性对膜污染的影响更为显著。所以,络合稳定性较高的Ala-NOM是造成纳滤膜污染加剧最关键的残余铝形态。
  Although residual aluminum has been recognized one of the key foulants contributing to nanofiltration membrane fouling in drinking water treatment, the degree to which various residual aluminum components influence membrane fouling is unknown. In this study, the species distribution of residual aluminum in the nanofiltration influent was manipulated in order to analyze the effect of residual aluminum's degree of polymerization and complexation with organic matter on membrane fouling. Results showed that even when the concentrations of medium and high polymeric aluminum (Alb/Alc) were increased to 200 μg/L, they had virtually little impact on membrane fouling, whereas the concentration of oligomeric aluminum (Ala) in the range of 50 μg/L could significantly aggravate the membrane fouling rate. In comparison to the concentration of Ala, the complex stability of Ala and natural organic matter (NOM) was shown to have a higher effect on membrane fouling. As a result, the most significant residual aluminum form that aggravated the fouling of nanofiltration membranes was thus the more stable Ala-NOM.
袁梓屹(1996-),男,陕西汉中人,硕士,主要研究方向为纳滤膜污染控制技术,E-mail:510793028@qq.com

参考文献:
 [1] 赵阳莹. 新型无机-有机复合纳滤膜截留和抗膜污染机理 [D]; 清华大学, 2019.
[2] 赵长伟, 唐文晶, 贾文娟, et al. 纳滤去除水中新兴污染物的研究进展 [J]. 膜科学与技术, 2021, 41(01): 144-51.
[3] 黄斌, 魏春海, 瞿芳术, et al. 反渗透工艺进水污染指数的研究进展 [J]. 膜科学与技术, 2020, 40(02): 146-55.
[4] Kimura M, Matsui Y, Kondo K, et al. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants [J]. Water research, 2013, 47(6): 2075-84.
[5] Yang Z, Gao B, Yue Q. Coagulation performance and residual aluminum speciation of Al2 (SO4) 3 and polyaluminum chloride (PAC) in Yellow River water treatment [J]. Chemical Engineering Journal, 2010, 165(1): 122-32.
[6] Ye C, Wang D, Shi B, et al. Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294(1-3): 163-73.
[7] Shu-xuan D, Hui X, Feng X, et al. Effects of Al species on coagulation efficiency, residual Al and floc properties in surface water treatment [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459: 14-21.
[8] Feng C, Zhao S, Bi Z, et al. Speciation of prehydrolyzed Al salt coagulants with electrospray ionization time-of-flight mass spectrometry and 27Al NMR spectroscopy [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392(1): 95-102.
[9] Tang H, Xiao F, Wang D. Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review [J]. Advances in Colloid and Interface Science, 2015, 226: 78-85.
[10] Furrer G, Gfeller M, Wehrli B. On the chemistry of the Keggin Al13 polymer: Kinetics of proton-promoted decomposition [J]. Geochimica et cosmochimica acta, 1999, 63(19-20): 3069-76.
[11] Srinivasan P, Viraraghavan T, Subramanian K. Aluminium in drinking water: An overview [J]. Water Sa, 1999, 25(1): 47-55.
[12] Van Benschoten J E, Edzwald J K. Measuring aluminum during water treatment: methodology and application [J]. Journal‐American Water Works Association, 1990, 82(5): 71-8.
[13] Ma B, Hu C, Wang X, et al. Effect of aluminum speciation on ultrafiltration membrane fouling by low dose aluminum coagulation with bovine serum albumin (BSA) [J]. Journal of Membrane Science, 2015, 492: 88-94.
[14] Browne B, Driscoll C. pH-dependent binding of aluminum by a fulvic acid [J]. Environmental science & technology, 1993, 27(5): 915-22.
[15] Teng J, Chen Y, Ma G, et al. Membrane fouling by alginate in polyaluminum chloride (PACl) coagulation/microfiltration process: Molecular insights [J]. Separation and Purification Technology, 2020, 236: 116294.
[16] Letterman R D, Driscoll C T. Survey of residual aluminum in filtered water [J]. Journal‐American Water Works Association, 1988, 80(4): 154-8.
[17] Gabelich C J, Chen W R, Yun T I, et al. The role of dissolved aluminum in silica chemistry for membrane processes [J]. Desalination, 2005, 180(1-3): 307-19.
[18] 王智, 夏建中, 王小亻毛. 纳滤膜截留特性与膜基本特征之间关系的研究 [J]. 环境科学学报, 2018, 38(05): 1843-50.
[19] Guo Y, Li T-y, Xiao K, et al. Key foulants and their interactive effect in organic fouling of nanofiltration membranes [J]. Journal of Membrane Science, 2020, 610: 118252.
[20] Weber J H, Wilson S A. The isolation and characterization of fulvic acid and humic acid from river water [J]. Water research, 1975, 9(12): 1079-84.
[21] Tang C, He Z, Zhao F, et al. Effects of cations on the formation of ultrafiltration membrane fouling layers when filtering fulvic acid [J]. Desalination, 2014, 352: 174-80.
[22] Hong S, Elimelech M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes [J]. Journal of membrane science, 1997, 132(2): 159-81.
[23] Mallevialle J, Anselme C, Marsigny O. Effects of humic substances on membrane processes [J]. 1989.
[24] Liu D, Cabrera J, Zhong L, et al. Using loose nanofiltration membrane for lake water treatment: A pilot study [J]. Frontiers of Environmental Science & Engineering, 2021, 15(4): 1-11.
[25] Jiang J-Q. The role of coagulation in water treatment [J]. Current Opinion in Chemical Engineering, 2015, 8: 36-44.
[26] Tomperi J, Pelo M, Leiviskä K. Predicting the residual aluminum level in water treatment process [J]. Drinking Water Engineering and Science, 2013, 6(1): 39-46.
[27] Matilainen A, Vepsäläinen M, Sillanpää M. Natural organic matter removal by coagulation during drinking water treatment: A review [J]. Advances in colloid and interface science, 2010, 159(2): 189-97.
[28] Chen Z, Luan Z, Jia Z, et al. Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions [J]. Journal of Environmental Management, 2009, 90(8): 2831-40.
[29] Yan M, Wang D, Ni J, et al. Mechanism of natural organic matter removal by polyaluminum chloride: effect of coagulant particle size and hydrolysis kinetics [J]. Water research, 2008, 42(13): 3361-70.
[30] Masion A, Vilgé-Ritter A, Rose J, et al. Coagulation-flocculation of natural organic matter with Al salts: Speciation and structure of the aggregates [J]. Environmental Science & Technology, 2000, 34(15): 3242-6.
[31] Jiao R, Xu H, Xu W, et al. Influence of coagulation mechanisms on the residual aluminum–The roles of coagulant species and MW of organic matter [J]. Journal of Hazardous Materials, 2015, 290: 16-25.
[32] Yan M, Wang D, Qu J, et al. Relative importance of hydrolyzed Al (III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: a case study with the typical micro-polluted source waters [J]. Journal of Colloid and Interface Science, 2007, 316(2): 482-9.
[33] Zhao H, Liu H, Qu J. Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species [J]. Journal of Colloid and Interface Science, 2009, 330(1): 105-12.
[34] Zhao H, Liu H, Hu C, et al. Effect of aluminum speciation and structure characterization on preferential removal of disinfection byproduct precursors by aluminum hydroxide coagulation [J]. Environmental science & technology, 2009, 43(13): 5067-72.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号