新型聚芳醚砜锂离子电池隔膜的制备及性能
作者:储 健12,王丽华2,虞鑫海1
单位: 1.东华大学应用化学系,上海 201620;2. 中国科学院化学研究所, 北京 100190
关键词: 新型聚芳醚砜(BDD);锂离子电池;隔膜;非溶剂致相分离法
出版年,卷(期):页码: 2021,41(6):75-84

摘要:
 利用非溶剂致相分离法(NIPS)制备新型结构聚芳醚砜(BDD)锂离子电池隔膜,详细考察溶剂种类、聚合物浓度、凝固浴组成以及铸膜液在空气中的停留时间(T)等因素对隔膜微结构和性能的影响,得出最佳成膜条件:溶剂为磷酸三乙酯(TEP),聚合物浓度为20 wt%,凝固浴为水/异丙醇=4/6(质量比),停留时间为20 s。对最佳成膜条件下隔膜进行测试,发现与聚丙烯(PP)隔膜相比,BDD隔膜具有更高的孔隙率、吸液率以及离子电导率,分别达到了90.52%,377.76%和0.92 mS cm-1,且热稳定性能优异。该隔膜所组装的锂离子电池在0.2 C电流密度下达到了141.2 mAh g-1的放电比容量,高于PP的123.7 mAh g-1,表现出优异的倍率性能;同时在0.5 C电流密度下循环100圈后,容量保持率达到了92.3%,说明有优异的循环性能。
 By using the non-solvent induced phase separation(NIPS) method to prepare a new-structure polyarylethersulfone (BDD) lithium ion battery separator, this paper has a detailed exploration of the factors such as the type of solvent, polymer concentration, coagulation bath composition and the residence time of the casting liquid in the air (T) on the microstructure and performance of the separator film, which helps to work out the best film forming conditions : the solvent should be TEP, the polymer concentration should be 20%, the coagulation bath should be water and isopropanol in the proportion of 4:6, and the residence time of the casting liquid in the air should be 20 seconds. The separator is tested under the optimal film-forming conditions, and it is found that, compared with the PP separator, the BDD separator has higher porosity, liquid-absorbing ratio and ionic conductivity reaching 90.52%, 377.76% and 0.92 mS cm-1 as well as excellent thermal stability. The lithium-ion battery assembled by the polyarylethersulfone separator has reached a discharge specific capacity of 141.2 mAh g-1 at a current density of 0.2C, which is higher than the 123.7 mAh g-1 of PP, showing excellent rate performance. Meanwhile, the capacity retention rate reaches 92.3% after 100 cycles under 0.5 C, showing excellent cycle performance.
储健(1997-),安徽安庆人,硕士研究生,主要从事锂离子电池隔膜的制备.

参考文献:
 [1]储健,虞鑫海,王丽华. 国内外锂离子电池隔膜的研究进展[J].合成技术及应用, 2020,35(02):24-29.
[2]Li Y L, Wang X, Liang J Y, et al. Design of A High Performance Zeolite/Polyimide Composite Separator for Lithium-Ion Batteries[J]. Polymers-Basel, 2020, 12(4).
[3]Li X, Chen S L, Xia Z L, et al. High performance of boehmite/polyacrylonitrile composite nanofiber membrane for polymer lithium-ion battery[J]. Rsc Advances, 2020, 10(46):27492-27501.
[4]Ajkidkarn P, Manuspiya H. Novel bacterial cellulose nanocrystals/polyether block amide microporous membranes as separators for lithium-ion batteries[J]. International Journal of Biological Macromolecules, 2020, 164: 3580-3588.
[5]Cho S J, Choi H, Youk, J H. Evaluation of PBI Nanofiber Membranes as a High-temperature Resistance Separator for Lithium-ion Batteries[J]. Fibers and Polymers, 2020, 21(5) : 993-998.
[6]Tan J Y, Kong L Y, Qiu Z M, et al. Flexible, high-wettability and thermostable separator based on fluorinated polyimide for lithium-ion battery[J]. Journal of Solid State Electrochemistry, 2018, 22(11) : 3363-3373.
[7]Simari C, Lufrano E, Brunetti A, et al. Highly-performing and low-cost na-nostructured membranes based on Polysulfone and layered doubled hydroxide for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Source, 2020, 471(01): 1-10.
[8]耿文哲, 冯永, 王馨昱, 等. 新型高性能NH2-MIL-125(Ti)/聚芳醚砜反应性杂化超滤膜[J].东北师大学报(自然科学版), 2020, 52(04):143-150.
[9]Koulivand H, Shahbazi A, Vatanpour V, et al. Novel antifouling and antibacterial polyethersulfone membrane prepared by embedding nitrogen-doped carbon dots for efficient salt and dye rejection[J]. Materials Science&Engineering C-Materials for Biologic Application, 2020, 111:1-9.
[10]Guillen G R, Pan Y J, Li M H, et al. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3798-3817.
[11]虞鑫海,储健,王丽华,陈晓军. 一种聚芳醚砜锂离子电池隔膜及其制备方法[P]. 上海市:202110882818.0,2021-08-03.
[12]雷晓慧, 丁雪佳, 王林生, 等. 相转化法制备聚砜膜研究进展[J]. 中国塑料, 2013, 27(1):13-16
[13]侯影飞, 姜琳, 张瑶瑶, 等. 聚酰亚胺嵌段聚乙二醇锂离子电池隔膜的制备及性能研究[J]. 膜科学与技术, 2019, 39(6): 61-70
[14]冯凯敏, 王丽华, 韩旭彤. 水蒸汽诱导相分离法制备聚苯并咪唑多孔膜[J]. 膜科学与技术, 2018, 38(1):51-60
Wang D M, Lai J Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation[J]. Current Opinion in Chemical Engineering, 2013, 2(2):229-237.
[16]Byun S, Lee S H, Song D, et al. A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2019, 72:390-399.
[17]Alexowsky C, Bojarska M, Ulbricht M. Porous poly(vinylidene fluoride) membranes with tailored properties by fast and scalable non-solvent vapor induced phase separation[J]. Journal of Membrane Science, 2019, 577:69-78
[18]Dong J M, Zhang Y F, Wang J Y, et al. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process[J]. Journal of Membrane Science, 2018, 568:22-29
[19]Huang X S. A lithium-ion battery separator prepared using a phase inversion process[J]. Journal of Power Sources, 2013, 216:216-221
[20]Park H C, Kim Y P, Kim H Y, et al. Membrane formation by water vapor induced phase inversion. Journal of Membrane Science, 1999, 156(2):169-178
[21]Li H J, Li L, Zheng S Z, et al. High Temperature Resistant Separator of PVDF-HFP/DBP/C-TiO2 for Lithium-Ion Batteries[J]. Materials, 2019, 12(17)
[22]Kim K M, Park N G, Ryu K S, et al. Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods[J]. Electrochimica Acta, 2006, 51(26):5636-5644
[23]Kim S, Jeon M S, Kim J Y, et al. Adsorptive removal of harmful algal species microcystis aeruginosa directly from aqueous solution using polyethyleneine coated polysulfone-biomass composite fiber[J]. Biodegradation, 2018, 29(04): 349-358.
[24]Khodaverdi F, Vaziri A, Javanbakht M, et al. Improvement of PAN separator properties using PVA/malonic acid by electrospinning in lithium ion-batteries[J]. Journal of Applied Polymer Science, 2021, 138(13)
[25]王旭霞,相转化法制备聚醚酰亚胺锂离子电池隔膜及其性能研究[D], 北京, 北京理工大学
[26]Jeong T Y, Lee Y D, Ban Y, et al. Polyimide composite separator containing surface-modified hollow mesoporous silica nanospheres for lithium-ion battery application[J]. Polymer, 2021, 213
[27]Zhang Z, Zhou M L, Yu J,et al. Poly(vinylidene fluoride) Modified Commercial Paper as a Separator with Enhanced Thermal Stability and Electrolyte Affinity for Lithium-ion Battery[J]. Energy & Environmental Materials, 2020
[28]Xie Y, Zou H L, Xiang H F, et al. Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes[J]. Journal of Membrane Science, 2016, 503:25-30
Caquineau H, Menut P, Deratani A, et al. Influence of the relative humidity on film formation by vapor induced phase separation[J]. Polymer Engineering and Science, 2003, 43(4):798-808

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号