基于多巴薄壁微囊制备无缺陷有机溶剂纳滤膜
作者:时飞 李红英 李奕帆
单位: 郑州大学化工学院,郑州 450001
关键词: 薄膜复合膜;界面阻力;薄壁微囊;有机溶剂纳滤
出版年,卷(期):页码: 2021,41(6):85-94

摘要:
 薄膜复合膜(TFCM)因其高的分离性能而在低分子量物系的分离中有着广泛的应用。然而,在其制备过程中支撑层近表面区域常形成阻力集中区而降低膜的通量。基于此,本工作制备了具有二维性质的柔性多巴(Dopa)薄壁微囊并使其在支撑体上组装成膜,同时微囊柔性的特质可以使其进行无缺陷组装。这种使用介观尺度的有机构造子的制膜方法可以减小支撑层界面区域的附加阻力,所制备的Dopa复合膜在有机溶剂纳滤领域展现出较好的分离性能,其对甲醇的通量达到了440 L m-2 h-1 bar-1,对大于2 nm的染料分子的截留量达到95%以上,同时,Dopa复合膜表现出较好的稳定性,为制备无缺陷TFCM提供了一种新的思路。
 Thin film composite membrane (TFCM) has a wide range of applications in the separation of low molecular weight systems due to its high separation performance. However, the near surface area of the support layer often suffers from a resistance concentration area during its preparation process, which reduces the separation performance of the membrane. Based on this, this work has prepared flexible two-dimensional Dopa thin-walled microcapsules, which was assembled on the support to prepare a film. And the flexibility of the microcapsules allows it to be assembled without defects. This method can reduce the additional resistance in the interface area of film by using mesoscopic organic constructor. The Dopa composite membrane exhibits good performance for organic solvent nanofiltration, and its methanol permeance reaches 440 L m-2 h-1 bar-1 with the retention of dye molecules which larger than 2 nm more than 95%. At the same time, the Dopa composite membrane shows good operational stability. This method paves a new way for the preparation of defect-free TFCM.
时飞(1996-),男,山东省菏泽市人,硕士研究生,主要研究方向为膜分离技术,E-mail 1591448684@qq.com

参考文献:
 [1]Ho B, Kamcev J, Robeson L, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. [J]. Science, 2017, 356: 1137.
[2]Lively R, Sholl D. From water to organics in membrane separations. [J]. Nat Mater, 2017, 16: 276-279.
[3]徐南平, 高从堦, 金万勤. 中国膜科学技术的创新进展. [J]. 中国工程科学. 2014, 16(12): 4-9. 
[4]赵冰, 王军, 田蒙奎. 我国膜分离技术及产业发展现状. [J]. 现代化工. 2020, 41(2): 6-10.
[5]周宗尧, 张朔, 王宁. 有机溶剂分离膜技术研究进展. [J] .膜科学与技术. 2018, 38(1): 104-113.
[6]Basma A, Christian D, Albuflasa P, et al. Pressure and osmotically driven membrane processes: A review of thebenefits and production of nano-enhanced membranes for desalination. [J]. Desalination, 2020, 479: 1143233.
[7]时飞, 李奕帆.混合基质膜在碳捕集领域的研究进展. [J]. 化工进展, 2020, 39(06): 2453-2462.
[8]Xie K, Fu Q, Qiao, G., et al. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. [J]. J Membr Sci, 2019, 572: 38-60.
[9]Wong K, Goh P, Ismail A, et al. Thin film nanocomposite: the next generation selective membrane for CO2 removal. [J]. J Mater Chem A, 2016, 4(41): 15726-15748.
[10]Lau W, Ismail A, Misdan N, et al. A recent progress in thin film composite membrane: A review. [J]. Desalination, 2012, 287: 190-199.
[11]Dai Z, Ansaloni L, Deng L, et al. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. [J]. Green Energy Environ, 2016, 1(2): 102-128.
[12]Nguyen T, Nguyen B, Kim J, et al. Sustainable Fabrication of Organic Solvent Nanofiltration Membranes. [J]. Membranes, 2020, 11(1): 19.
[13]Zeng C, Lianga, Chunga T, et al. A review of polymeric composite membranes for gas separation and energy production. [J]. Prog Polym Sci, 2019, 97: 101141.
[14]Selyanchyn R, Ariyoshi M, Fujikawa S. Thickness Effect on CO2/N2 Separation in Double Layer Pebax-1657®/PDMS Membranes. [J]. Membranes, 2018, 8(4): 121.
[15]Peter J, Peinemann K-V. Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid® 5218 selective layer. [J]. J Mem Sci, 2009, 340: 62-72.
[16]Liu M, Xie K, Mitchell D, et al. Ultrathin Metal−Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. [J]. ACS Nano, 2018, 12(11): 11591-11599
[17]Ying Y, Yang Z, Shi D, et al. Ultrathin covalent organic framework film as membrane gutter layer for high-permeance CO2 capture. [J]. J Mem Sci, 2021, 632: 119384.
[18]Brunettia A, Zitoa P, Borisov I, et al. CO2 separation from humidified ternary gas mixtures using a polydecylmethylsiloxane composite membrane. [J]. Fuel Process Technol, 2020, 210: 106550. 
[19]Yave W, Car1 A, Wind J, et al. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. [J]. Nanotechnology. 2010, 21: 395301.
[20]Chen H, Xiao Y, Chung T, et al. Multi-layer composite hollow fiber membranes derived from poly(ethylene glycol) (PEG) containing hybrid materials for CO2/N2separation. [J]. J Mem Sci, 2011, 381: 211–220.
[21]Ramon G, Wong Ma, Hoek E, et al. Transport through composite membrane, part1:Is there an optimal support membrane? [J]. J Mem Sci, 2012, 415–416: 298–305.
[22]Wijmansn J, Hao P. Influence of the porous support on diffusion in composite Membranes. [J]. J Mem Sci, 2015, 494: 78–85.
[23]Ghosha A, Hoekb E. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. [J]. J Mem Sci, 200, 336: 140–148. 
[24]Kim S, Wang H, Lee Y, et al. 2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. [J]. Angew Chem Int Ed, 2019, 58: 17512 –17527.
[25]Anasori B, Lukatskaya M, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. [J]. Nat Rev Mater, 2017, 2: 16098.
[26]Ries L, Petit E, Michel T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. [J]. Nat Mater, 2019, 18: 1112-1117.
[27]Shi J, Yang C, Zhang S, et al. Polydopamine microcapsules with different wall structures prepared by a template-mediated method for enzyme immobilization. [J]. ACS Appl Mater Interfaces, 2013, 20, 5:9991-9997.
[28]Yang Q, Su Y, Chi C. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation.[J]. Nature Mater, 2017, 16: 1198–1202.
[29]Nie L, Goh K, Wang Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. [J]. Sci Adv, 2020, 6:eaaz9184.
[30]Huang L, Chen J, Gao T, et al. Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. [J]. Adv Mater, 2016, 28: 8669-8674.
[31]Wang J, Chen P, Shi B, et al. A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. [J]. Angew Chem Int Ed, 2018, 57:6814-6818.
[32]Yang Q, Su Y, Chi C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. [J]. Nat Mater, 2017, 16: 1198-1203.
[33]Wang S, Dinesh M, Sutisna B, et al. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. [J]. J Mater Chem A, 2019, 7: 11673–11682.
[34]Wang Q, Wu X, Chen J, et al. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration. [J]. Chem Eng Sci, 2020, 228: 116002.
[35]Liang B, Wang H, Shi X, et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. [J]. Nat Chem, 2018, 10: 961-967.
[36]Yang C, Li S, Lv X, et al. Effectively regulating interfacial polymerization 1 process via in-situ constructed 2D COFs interlayer for fabricating organic solvent nanofiltration membranes. [J]. J Mem Sci, 2021, 637: 119618.
[37]Xu Y, Yu S, Peng G, et al. Novel crosslinked brominated polyphenylene oxide composite nanofiltration membranes with organic solvent permeability and swelling property. [J]. J Mem Sci, 2021, 620: 118784.
[38]Chen J, Zhang J, Wu X, et al. Accurately controlling the hierarchical nanostructure of polyamide membranes via electrostatic atomization-assisted interfacial polymerization. [J]. J Mater Chem A, 2020, 8: 9160–9167.
[39]Zhou Sheng, Zhao Y, Zheng J, et al. High-performance functionalized polymer of intrinsic microporosity (PIM) composite membranes with thin and stable interconnected layer for organic solvent nanofiltration. [J]. J Mem Sci, 2020, 595: 117505.
[40]Zhai Z, Jiang C, Zhao N, et al. Polyarylate membrane constructed from porous organic cage for high-performance organic solvent nanofiltration. [J]. J Mem Sci, 2020, 595: 117505.
[41]Gao Z, Feng Yi, Ma D, et al. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. [J]. J Mem Sci, 2019, 574: 124-135.
[42]Dey K, Pal M, Rout K, et al. Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films. [J]. J Am Chem Soc, 2017, 139, 13083−13091.
Liu J, Han G, Zhao D, et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. [J]. Sci Adv, 2020, 6: eabb1110

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号