高压纳滤膜在浓盐水资源化利用中的应用研究
作者:张兆钢,梁松苗,田长周,胡利杰
单位: 时代沃顿科技有限公司,贵阳 550014
关键词: 高压纳滤膜 组合浓缩 浓水资源化 梯级分离
出版年,卷(期):页码: 2021,41(6):146-152

摘要:
 纯碱生产厂双膜法精制卤水的工艺中,纳滤系统的浓水富含MgSO4、MgCl2及NaCl。用耐压等级为8.5MPa,不同MgCl2截留率的纳滤膜对常压纳滤系统的浓水进行浓缩实验,探究纳滤浓水资源化利用的可行性。结果表明:前三段选择截留率为96.3%、后两段选择截留率为45.5%的纳滤膜的组合浓缩方案是较优工艺。大部分NaCl、MgCl2分别渗透到前三段、后两段产水中,MgSO4保留在浓水中,MgCl2、MgSO4的浓度分别可达48.61g/L、205.64g/L。NaCl、MgCl2及MgSO4的可回用率分别为76.43%、62.59%及61.29%,初步实现了有价元素梯级分离。在用截留率为96.3%的纳滤膜元件进行单独浓缩的工艺中,MgCl2及MgSO4保留在浓水中,浓缩倍数分别为6.29及6.73;产水是较纯净的NaCl溶液,浓度为20.21g/L。组合浓缩工艺后两段产水侧含有较高浓度的MgCl2,使纳滤膜两侧溶液的渗透压差降低,利于MgSO4进一步浓缩。可见,不同性能的纳滤膜的组合工艺具有一定的应用前景。
  In the process of refining brine by double membrane method in soda production plant, the concentrate of nanofiltration system is rich in MgSO4, MgCl2 and NaCl. The concentration experiments were carried out by different MgCl2 rejection nanofiltration membranes that their maximum operating pressure is 8.5 MPa to explore the feasibility of resource utilization for concentrate in nanofiltration system. The experimental result shows that:the combined concentration schemed nanofiltration membrane whose rejection was 96.3% in first to third stages and rejection was 45. 5% in the second two stages was preferred。NaCl and MgCl2 were mainly permeated with water in the first to third stages and second two stages respectively, while MgSO4 were remained in concentrate, the concentration of MgCl2 and MgSO4 were 48.61g/l and 205.64g/l respectively. The reuse rates of NaCl, MgCl2 and MgSO4 were 76.43%, 62.59% and 61.29% respectively and achieved the gradient separation of Valuable elements. For single concentration process by nanofiltration membrane whose rejection was 96.3%, both MgCl2 and MgSO4 were remained in concentrate, the concentration multiples were 6.29 and 6.73 respectively; the permeate was NaCl solution with a concentration of 20.21g/l. For combined concentration process, the permeate contained high concentration of magnesium chloride, reduced the osmotic pressure difference across the membrane, and benefited to the further concentration of magnesium sulfate. It can be forecasted that the combination process of nanofiltration membrane with different performance has a certain application prospect.
张兆钢(1988-),男,贵州晴隆人,本科,工程师,主要从事反渗透、纳滤膜的应用研究.

参考文献:
 [1]李兴, 勾芒芒, 刘学峰,等. 高盐废水处理现状及研究进展[J]. 水处理技术, 2019, 45(05):12-16+20.
[2]黄欣, 陈业钢, 苏楠楠,等. 高盐废水分质结晶及资源化利用研究进展[J]. 化学工业与工程, 2019, v.36(01):14-27.
[3]王兵, 施斌, 来进和,等. 高盐有机废水处理研究现状及应用[J]. 水处理技术, 2020, v.46;No.338(03):11-16.
[4]尹刘明. 高盐废水处理工艺技术研究进展[J]. 当代化工研究, 2018,33,26-28
[5]卞晓彤, 黄永明, 郭如涛,等. 高盐废水单质分盐与资源化利用的研究进展[J]. 无机盐工业, 2019, 051(008):7-12.
[6]王之敏, 杨铭, 王晓慧,等. 盐度对SBR处理低碳氮比废水脱氮性能的影响[J]. 水处理技术, 2019, v.45;No.332(09):125-130.
[7]卢海娇, 王静康, 郝红勋,等. 基于相图的高盐废水分质结晶提盐研究[C]// 第十三届全国水处理化学大会暨海峡两岸水处理化学研讨会. 55-56
[8]Mulder, M·). 膜技术基本原理.2版[M]. 清华大学出版社, 1999: 8-10,188-200
[9]陈则立, 李彤, 朱华静. 阳离子交换膜在高盐废水处理中的应用[J]. 膜科学与技术, 2019(5).136-142
[10] Jaa Fa Rzadeh N ,  Ghan Ba Ri F ,  Ahmadi M , et al. Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: Permanganate, Electro-Fenton and Co3O4/UV/peroxymonosulfate[J]. Chemical Engineering Journal, 2017, 308:142-150.
[11]吴雅琴, 杨波, 张高旗,等. 膜集成技术在高盐废水资源化工程中的应用[J]. 水处理技术, 2019, v.45;No.327(04):136-139.
[12]任同伟, 俞彬, 阳春芳,等. 煤化工高含盐废水资源化处理技术的工程应用研究[J]. 工业水处理, 2019, 039(002):96-99.
[13]许加海, 万树春, 王乃琳,等. 石化高盐废水处理及零排放回用[J]. 工业水处理, 2020, v.40;No.351(05):130-133.
[14]杨波, 吴雅琴, 申屠勋玉,等. 膜组合工艺在高盐废水资源化中的应用[C]// 2015年亚太脱盐技术国际论坛. 27-33.
[15] Luo J ,  Wan Y . Effects of pH and salt on nanofiltration-a critical review[J]. Journal of Membrane Science, 2013, 438(Complete):18-28. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号