聚合物分离膜交联改性研究进展
作者:薛腾遥,冯世超,汪称意,庄永兵
单位: 1中国科学院过程工程研究所,生化工程国家重点实验室,北京,100190; 2常州大学,材料科学与工程学院,江苏,常州,213164; 3中国科学院大学,化学工程学院,北京,1000499
关键词: 聚合物;分离膜;交联反应;改性;膜性能
出版年,卷(期):页码: 2021,41(6):182-191

摘要:
 交联改性是一种能有效改善聚合物分离膜性能(如机械性能、热性能等)的方法。选择合适的交联反应与交联剂,能够有效增强聚合物分离膜的机械、热及分离等多方面性能。本文综述了聚合物分离膜的交联改性方法及应用,总结了用于聚合物交联改性的常见物理、化学交联类型及其交联条件、产物结构与性能特点,阐述了交联改性在不同聚合物分离膜领域的应用及交联改性对分离膜性能的影响,并就聚合物分离膜交联改性研究的未来发展进行了展望。
 Crosslinking modification is a method that can effectively improve the properties of polymer separation membrane, such as mechanical properties, thermal properties and so on. Selecting appropriate crosslinking reaction and crosslinking agent can effectively enhance the mechanical, thermal and separation properties of polymer separation membrane. This paper summarizes the crosslinking modification methods and applications of polymer separation membranes, summarizes the common physical and chemical crosslinking types and crosslinking conditions, product structure and performance characteristics for polymer crosslinking modification, and expounds the application of different crosslinking modifications in different fields and the influence of crosslinking modification on the performance of separation membranes. The future development of crosslinking modification of polymer separation membrane was prospected.
薛腾遥(1995),男,河北石家庄人,硕士生,主要从事高性能聚合物膜的制备及应用.

参考文献:
 [1]Zhuang Y B,Jong G S,Young M L. Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Prog Polym Sci,2019,92:35-88.
[2]王学军,张恒,郭玉国. 膜分离领域相关标准现状与发展需求[J]. 膜科学与技术,2015,2(35):120-127.
[3]马超,黄海涛,顾计友,等.高分子分离膜材料及其研究进展[J]. 材料导报A:综述篇,2006,5(30):144-157.
[4]LiuZ Y,Qiu W L,Quan W Y,et al. Fine-tuned thermally cross-linkable 6FDA-based polyimide membranes for aggressive natural gas separation[J]. J Membr Sci,2021,119474.
[5]Luu D X,Kim D. Strontium cross-linked sPEEK proton exchange membranes for fuel cell[J]. Solid State Ionics,2011,192:627-631.
[6]周桂娥,陈均,张秀真,等. 高分子分离膜材料的改性方法[J]. 信阳师范学院学报,2003,16(3):363-364.
[7]杨金涛,王章忠,卜小海,等. 离子交换膜的改性研究进展[J]. 膜科学与技术,2019,3(39):150-156.
[8]穆永信,王三反,王挺,等. 离子交换膜改性研究进展[J]. 膜科学与技术,2013,6(33):119-122.
[9]郭双祯,王力,史真真. 污水处理膜材料的亲水改性及其研究进展[J]. 膜科学与技术,2015,1(35):131-135.
[10]Hu W K,Wang Z J,Xiao Y,et al. Advances in crosslinking strategies of biomedical hydrogels[J]. Biomater Sci,2019,7:843-855.
[11]LiH,Yang P,Pageni P,et al.Recent advances in metal-containing polymer hydrogels[J]. Macromol Rapid Commun,2017,38,1700109.
[12]Yin J L,Tang H,Xu Z Z,et al. Enhanced mechanical strength and performance of sulfonated polysulfone/Tröger’s base base polymer blend ultrafiltration membrane[J]. J Membr Sci,2021,625,119138.
[13]Lusianaa R A,SangkotaaV D A,Sasongko N A,et al. Permeability improvement of polyethersulfone-polietylene glycol (PEG-PES) flat sheet type membranes by tripolyphosphate-crosslinked chitosan (TPP-CS) coating[J]. Int J Biol Macromol,2020,152:633-644.
[14]岳程飞,丁长坤,李璐,等. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报,2020,43(3):1-7.
[15]Martinez H,HillmyerMA. Carboxy-Telechelic Polyolefins in Cross-Linked Elastomers[J]. Macromolecules,2014,47:479-485.
[16]Shang C, Wu Z X,Wu W D,et al. Chemical Crosslinking Assembly of ZSM-5 Nanozeolites into Uniform and Hierarchically Porous Microparticles for High-Performance Acid Catalysis[J]. Mater Interfaces,2019,11:16693−16703.
[17]Xu X W,Jerca F A,Jerca V V,et al. Covalent Poly(2-Isopropenyl-2-Oxazoline) Hydrogels with Ultrahigh Mechanical Strength and Toughness through Secondary Terpyridine Metal-Coordination Crosslinks[J]. Adv Funct Mater,2019,29,1904886.
[18]Le N L,Wang Y,Chung T S. Synthesis,cross-linking modifications of 6FDA-NDA/DABA polyimide membranes for ethanol dehydration via pervaporation[J]. J Membr Sci,2012,415-416:109-121.
[19]Zhang T,Deng L M,Li P. Decarboxylation Cross-Linking of Triptycene-Based Tro?ger’s Base Polymers for Gas Separation[J]. Ind Eng Chem Res,2020,59(41):18640-18648.
[20]Wu H,Zhang X,Zhao X T,et al. High flux reverse osmosis membranes fabricated with hyperbranched polymers via novel twice-crosslinked interfacial polymerization method[J]. J Membr Sci,2020,595,117480.
[21]吕晓莉,苏涛,韦日水. 酮肼交联反应在乳液聚合物中的应用研究[J]. 胶体与聚合,2008,26(2):37-38.
[22]曹翔,梁天,杨世刚,等. 邻甲酚醛环氧树脂与4,4’-二氨基二苯甲烷固化反应研究[J]. 化工时刊,2018,32(8):1-3.
[23]马昕宇,石熠,徐军. 室温自交联丙烯酸酯乳液的合成及性能研究[J]. 涂料工业,2021,51(2):8-15.
[24]包雅洁. 交联型全芳香聚酸亚胺的合成及性能研究[D]. 大连:大连理工大学,2011. 
[25]Cong H L,Yu B. Aminosilane Cross-linked PEG/PEPEG/PPEPG Membranes for CO2/N2 and CO2/H2Separation[J]. Ind Eng Chem Res,2010,49(19):9363-9369. 
[26]Sairam M,Loh X,Bhole Y,et al. Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN)[J]. J Membr Sci,2010,349:123-129.
[27]Lin X C,Shamsaei E,Kong B,et al. Porous diffusion dialysis membranes for rapid acid recovery[J]. J Membr Sci,2016,502:76-83.
[28]Nor M N A,Nakao H,Jaafar J,et al. Crosslinked carbon nanodots with highly sulfonated polyphenylsulfone as proton exchange membrane for fuel cell applications[J]. Int J Hydrog Energy,2020,45:9979-9988.
[29]Lin J Y,Huang J M,Wang J,et al. High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis[J]. J Membr Sci,2021,624:119116.
[30]丁一晋. 缩醛交联、增塑改性以及丙烯酰氯接枝改性聚乙烯醇的制备及其性能研究[D]. 北京:北京化工大学,2009.
[31]Yao B J,Ding L G,Li F,et al. Chemically Cross-Linked MOF Membrane Generated from Imidazolium-Based Ionic Liquid-Decorated UiO-66 Type NMOF and Its Application toward CO2Separation and Conversion[J]. ACS Appl Mater Interfaces,2017,9: 38919-38930.
[32]Laghmari S,May P,Ulbricht M. Polyzwitterionic hydrogel coating for reverse osmosis membranes by concentration polarization-enhanced in situ“click”reaction that is applicable in modules[J]. J Membr Sci,2021,629,119274.
[33]Zhu Y,Gao F,Wei X,et al. A novel bio-based coating material prepared from modified acetoacetylated castor oil and diisocyanate[J]. Prog Org Coat,2020,138,105397.
[34]张晗昱,翟进贤,杨荣杰. 端叠氮基聚醚的合成及与多炔固化剂的交联反应[J]. 火炸药学报,2012,35(5):45-48.
[35]付飞,王丹沈,明贵,等. 可自由基聚合的松香基苯并环丁烯单体的制备及其聚合性能研究[J]. 林产化学与工业,2019,39(6):21-28.
[36]An H,Lee A S,Kammakakam I,et al. Bromination/debromination-induced thermal crosslinking of 6FDA-Durene for aggressive gas separations[J]. J Membr Sci,2018,545:358-366.
[37]Singha N R,Kar S,Ray S,et al. Separation of isopropyl alcohol-water mixtures by pervaporation using crosslink IPN membranes[J]. Chem Eng Process,2009,48(5):1020-1029.
[38]Qiu W L,Chen C,Xu L R,et al. Sub-Tg Cross-Linking of a Polyimide Membrane for Enhanced CO2 Plasticization Resistance for Natural Gas Separation[J]. Macromolecules,2011,44:6046-6056.
[39]Kline G K,Weidman G R,Zhang Q N,et al. Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations[J]. J Membr Sci,2017,544:25-34.
[40]Shabanpanah S,Omrani A. Influences of crosslink density on the performance of PVA-diphenylamine-4-sulfonic acid sodium salt composite membranes[J]. Solid State Ionics,2019,338:12-19.
[41]Wang J Q,Li C,Wang F,er al. Hydrophilic modification of PTFE microfiltration flat membrane by crosslinking OCMCS-PEI to enhance anti-fouling property[J]. Prog Org Coat,2019,135:565–573.
[42]Zhao Y,Zhang Y Q,Li F R,et al. Ultra-robust superwetting hierarchical membranes constructed by coordination complex networks for oily water treatment[J]. J Membr Sci,2021,627,119234.
[43]Hu D,Wu H,Li Y X. Positively charged ultrafiltration membranes fabricated via graft polymerization combined with crosslinking and branching for textile wastewater treatment[J]. Sep Purif Technol,2021,264:118469.
[44]Zhang J M,Li S X,Ren D C,et al. Fabrication of ultra-smooth thin-film composite nanofiltration membrane with enhanced selectivity and permeability on interlayer of hybrid polyvinyl alcohol and graphene oxide[J]. Sep Purif Technol,2021,268,118649.
[45]Liu W Q,Geng X,Li S,et al. Preparation of lignosulfonate-based nanofiltration membranes with improved water desalination performance[J]. Eng Life Sci,2021:1-12.
[46]Lee K P,Arnot T C,Mattia D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential[J]. J Membr Sci,2011,370:1-22. 
[47]Ye B,Li Y,Chen Z,et al. Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: Radical roles, influencing factors, and degradation pathway[J]. Water Res,2017,124:381-387.
[48]Zhao P,Meng J Q,Zhang R,et al. Molecular design of chlorine-resistant polymer for pervaporation desalination[J]. Sep Purif Technol,2021,268,118671.
[49]Xue Y L,Lau C H,Cao Bing,et al. Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes[J]. J Membr Sci,2019,575:135-146.
[50]Backes C W,Weibel D E. Enhanced glycerol dehydration of pervaporation cross-linked PVA membranes modified by VUV/UV-C treatments[J]. J Appl Polym Sci,2021,138(30)50723. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号