有机溶剂纳滤膜的研究现状与展望
作者:水雪荣,李佳骐,冯炜林,方传杰,朱利平
单位: 高分子合成与功能构造教育部重点实验室,高分子科学与工程学系,浙江大学,杭州 310027
关键词: 有机溶剂纳滤;耐溶剂膜材料;微孔聚合物;二维材料
出版年,卷(期):页码: 2021,41(6):192-201

摘要:
 有机溶剂纳滤(OSN)技术在化工与制药等行业的物料分离、药物浓缩与精制、溶剂与催化剂回收等过程中展现出巨大的应用潜力,可大幅度降低分离过程的能耗和碳排放,助力实现“碳达峰、碳中和”的远景目标,正成为膜技术的研究热点之一。耐溶剂膜材料是OSN技术的核心,针对OSN膜存在的溶剂通量小、分离精度低、耐溶胀性能不足等挑战,近年来研究者们取得了诸多重要的进展,包括OSN膜材料的设计与制备、OSN传质模型的探究、OSN膜的工程应用等,本文对这些研究进展进行了综述与分析,并对OSN膜及其工程应用研究的未来趋势进行展望。未来的基础研究工作应该着力解决膜材料的按需设计与结构调控、溶剂渗透模型与分离机理、膜材料在服役过程中的结构演变与性能退化规律等关键科学问题,为高性能OSN膜材料的设计与制备及其工程应用提供科学指导。
 Organic solvent nanofiltration (OSN) technology has shown great application potential in the process of material separation, drug concentration and refining, solvent and catalyst recovery in the chemical and pharmaceutical industries. OSN technology can greatly reduce the energy consumption and carbon emissions of the separation process, which could help to achieve the long-term goal of “carbon peak and carbon neutrality”. OSN technology is becoming the key research of next-generation membrane technology. To address the problems of low solvent flux, low separation accuracy, and poor swelling resistance when polymer membranes used in the OSN process, researchers have made many important progress in recent years. This article reviewed these research progress, including the preparation of solvent-resistant membrane materials, the mechanism of solvent mass transfer and separation, and the engineering applications, and aimed to provide insights on the future trends of OSN technology.
水雪荣(1997-),女,浙江绍兴人,硕士生,研究方向为有机溶剂纳滤膜的设计与制备

参考文献:
 [1] Liang B, He X, Hou J J, et al. Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities[J]. Adv Mater, 2019, 31(45) : 14.
[2] Marchetti P, Solomon M F J, Szekely G, et al. Molecular Separation with Organic Solvent Nanofiltration: A Critical Review[J]. Chem Rev, 2014, 114(21) : 10735-10806.
[3] Karan S, Jiang Z W, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241) : 1347-1351.
[4] Koh D Y, Mccool B A, Deckman H W, et al. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes[J]. Science, 2016, 353(6301) : 804-807.
[5] Liu C J, Takagi R, Shintani T, et al. Organic Liquid Mixture Separation Using an Aliphatic Polyketone-Supported Polyamide Organic Solvent Reverse Osmosis (OSRO) Membrane[J]. ACS Appl Mater Interfaces, 2020, 12(6) : 7586-7594.
[6] 严宗毅. 跨膜渗透的流体力学分析[J]. 力学与实践, 1986, (05) : 2-8.
[7] Odani H, Uyeda T. Theories of Sorption and Transport in Polymer Membrane[J]. Polym J, 1991, 23(5) : 467-479.
[8] Wijmans J G, Baker R W. The solution-diffusion model: a review[J]. J Membr Sci, 1995, 107(1-2) : 1-21.
[9] Tsuru T, Sudoh T, Yoshioka T, et al. Nanofiltration in non-aqueous solutions by porous silica-zirconia membranes[J]. J Membr Sci, 2001, 185(2) : 253-261.
[10] 孟广耀, 董强, 刘杏芹,等. 无机多孔分离膜的若干新进展[J]. 膜科学与技术. 2003, (04) : 261-268.
[11] Wang Z, Wei Y M, Xu Z L, et al. Preparation, characterization and solvent resistance of γ-Al2O3/α-Al2O3 inorganic hollow fiber nanofiltration membrane[J]. J Membr Sci, 2016, 503: 69-80.
[12] Bhat S D, Naidu B V K, Shanbhag G V, et al. Mesoporous molecular sieve (MCM-41)-filled sodium alginate hybrid nanocomposite membranes for pervaporation separation of water-isopropanol mixtures[J]. Sep Purif Technol, 2006, 49(1) : 56-63.
[13] Burgal J D, Peeva L, Livingston A. Towards improved membrane production: using low-toxicity solvents for the preparation of PEEK nanofiltration membranes[J]. Green Chem, 2016, 18(8) : 2374-2384.
[14] Ali Z, Ghanem B S, Wang Y G, et al. Finely Tuned Submicroporous Thin-Film Molecular Sieve Membranes for Highly Efficient Fluid Separations[J]. Adv Mater, 2020, 32(22) : 7.
[15] Shui X R, Li J Q, Zhang M X, et al. Tailoring ultrathin microporous polyamide films with rapid solvent transport by molecular layer-by-layer deposition[J]. J Membr Sci, 2021, 628: 11.
[16] Jimenez-Solomon M F, Gorgojo P, Munoz-Ibanez M, et al. Beneath the surface: Influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration[J]. J Membr Sci, 2013, 448: 102-113.
[17] Li X, Chen B L, Cai W B, et al. Highly stable PDMS-PTFPMS/PVDF OSN membranes for hexane recovery during vegetable oil production[J]. RSC Adv, 2017, 7(19) : 11381-11388.
[18] Budd P M, Ghanem B S, Makhseed S, et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials[J]. Chem Commun, 2004, (2) : 230-231.
[19] Budd P M, Msayib K J, Tattershall C E, et al. Gas separation membranes from polymers of intrinsic microporosity[J]. J Membr Sci, 2005, 251(1-2) : 263-269.
[20] Gorgojo P, Karan S, Wong H C, et al. Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes[J]. Adv Funct Mater, 2014, 24(30) : 4729-4737.
[21] Li J Q, Zhang M X, Feng W L, et al. PIM-1 pore-filled thin film composite membranes for tunable organic solvent nanofiltration[J]. J Membr Sci, 2020, 601: 8.
[22] Cook M, Gaffney P R J, Peeva L G, et al. Roll-to-roll dip coating of three different PIMs for Organic Solvent Nanofiltration[J]. J Membr Sci, 2018, 558: 52-63.
[23] Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751) : 1166-1170.
[24] Yuan S S, Li X, Zhu J Y, et al. Covalent organic frameworks for membrane separation[J]. Chem Soc Rev, 2019, 48(10) : 2665-2681.
[25] Kandambeth S, Biswal B P, Chaudhari H D, et al. Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes[J]. Adv Mater, 2017, 29(2) : 9.
[26] Dey K, Pal M, Rout K C, et al. Selective Molecular Separation by lnterfacially Crystallized Covalent Organic Framework Thin Films[J]. J Am Chem Soc, 2017, 139(37) : 13083-13091.
[27] Shinde D B, Cao L, Wonanke A D D, et al. Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving[J]. Chem Sci, 2020, 11(21) : 5434-5440.
[28] Li C, Li S X, Tian L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. J Membr Sci, 2019, 572: 520-531.
[29] Basu S, Maes M, Cano-Odena A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks[J]. J Membr Sci, 2009, 344 : 190-198.
[30] Sorribas S, Gorgojo P, Tellez C, et al. High Flux Thin Film Nanocomposite Membranes Based on Metal-Organic Frameworks for Organic Solvent Nanofiltration[J]. J Am Chem Soc, 2013, 135(40) : 15201-15208.
[31] Peng Y, Li Y S, Ban Y J, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215) : 1356-1359.
[32] Peng Y, Li Y S, Ban Y J, et al. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation[J]. Angew Chem Int Ed, 2017, 56(33) : 9757-9761.
[33] Lei X T, Tay S W, Ong P J, et al. Organic Dye Solution Nanofiltration by 2D Zn-TCPP(Fe) Membrane - leverage of chemical and fluid dynamic effects[J]. J Ind Eng Chem, 2019, 78: 410-420.
[34] Huang L, Chen J, Gao T T, et al. Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofi ltration[J]. Adv Mater, 2016, 28(39) : 8669-8674.
[35] Yang Q, Su Y, Chi C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nat Mater, 2017, 16(12) : 1198-1202.
[36] Ding L, Wei Y Y, Wang Y J, et al. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks[J]. Angew Chem Int Ed, 2017, 56(7) : 1825-1829.
[37] Ran J, Zhang P P, Chu C Q, et al. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration[J]. J Membr Sci, 2020, 602: 10.
[38] White L S, Nitsch A R. Solvent recovery from lube oil filtrates with a polyimide membrane[J]. J Membr Sci, 2000, 179(1-2) : 267-274.
[39] Chen H L, Wu L G, Tan J, et al. PVA membrane filled beta-cyclodextrin for separation of isomeric xylenes by pervaporation[J]. Chem Eng J, 2000, 78(2-3) : 159-164.
[40] Zheng H Y, Yoshikawa M. Molecularly imprinted cellulose membranes for pervaporation separation of xylene isomers[J]. J Membr Sci, 2015, 478: 148-154.
[41] Shi D Q, Kong Y, Yu J X, et al. Separation performance of polyimide nanofiltration membranes for concentrating spiramycin extract[J]. Desalination, 2006, 191(1-3) : 309-317.
[42] 朱华旭, 唐志书, 潘林梅,等. 面向中药产业新型分离过程的特种膜材料与装备设计、集成及应用[J]. 中草药, 2019, 50(8) : 1776-1784.
[43] 王世岭. 超滤法一次提取黄芩甙的工艺研究[J]. 中成药, 1994, (03) : 2-3.
[44] 刘仲华, 林勇, 李佳银,等. 化妆品级葛根异黄酮的纳滤膜分离制备方法[P]. CN104523462A. 2015-04-22.
[45] Luthra S S, Yang X J, Dos Santos L M F, et al. Homogeneous phase transfer catalyst recovery and re-use using solvent resistant membranes[J]. J Membr Sci, 2002, 201(1-2) : 65-75.
[46] Nair D, Luthra S S, Scarpello J T, et al. Homogeneous catalyst separation and re-use through nanofiltration of organic solvents[J]. Desalination, 2002, 147(1-3) : 301-306.
[47] Van Der Gryp P, Barnard A, Cronje J P, et al. Separation of different metathesis Grubbs-type catalysts using organic solvent nanofiltration[J]. J Membr Sci, 2010, 353(1-2) : 70-77.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号