乙酸脱水膜研究进展
作者:王晓燕,阎雪茹,刘新磊
单位: 天津大学 化工学院 化学工程研究所,天津市膜科学与海水淡化技术重点实验室,化学工程联合国家重点实验室(天津大学),天津 300072
关键词: 乙酸脱水;膜;渗透汽化;分离
出版年,卷(期):页码: 2021,41(6):202-212

摘要:
 乙酸是基本的有机化工原料及重要的有机中间体,无论是在制备乙酸还是乙酸作为原料生产化工产品时,都伴随着水的生成,因此乙酸脱水是与乙酸相关的化工工业生产中十分重要的环节。相对于传统的高能耗精馏技术,渗透汽化膜分离技术具有操作条件简单、能源消耗少、分离效率高等优点。本文总结了近些年来用于乙酸脱水的渗透汽化膜的研究进展,从膜材料、膜制备、膜分离性能方面对现有乙酸脱水膜进行了总结分析。最后,对乙酸脱水膜的发展前景作出了展望。
  Acetic acid is a basic organic chemical raw material and an essential organic intermediate. Water is produced either in the preparation of acetic acid or in the production of chemical products from acetic acid related to acetic acid. Therefore, acetic acid dehydration is an essential process in chemical industry production. Compared with traditional high-energy-consumption distillation technology, pervaporation membrane separation technology shows the advantages of simple operating conditions, low energy consumption and high separation efficiency. In this study, the researches progress of pervaporation membranes for acetic acid dehydration is reviewed. Moreover, membrane materials, membrane preparation and membrane separation performance are summarized and compared. Finally, perspectives of acetic acid dehydration membrane are prospected.
王晓燕(1997-),女,河北邯郸人,硕士研究生,主要从事有机膜的制备及乙酸脱水研究。

参考文献:
 [1] Xu Z, Shi Z, Jiang L. Acetic and propionic acids,in: comprehensive biotechnology[M]. Elsevier, 2011: 189–199.
[2] Vidra A, Németh Á. Bio-produced acetic acid: a review[J]. Periodica Polytechnica Chemical Engineering, 2017, 62(3): 245–256.
[3] 盛依依. 乙酸生产技术进展及市场分析[J]. 石油化工技术与经济, 2019, 35(02): 26–31.
[4] Wang S-J, Huang K. Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation using p-xylene as an entrainer[J]. Chemical Engineering and Processing: Process Intensification, 2012, 60: 65–76.
[5] 王意, 李绍军. 稀醋酸脱水系统的模拟优化及其控制[J]. 现代化工, 2016, 36(07): 170–173.
[6] Shin C-H, Kim J-Y, Kim J-Y, et al. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process[J]. Journal of Hazardous Materials, 2009, 162(2–3): 1278–1284.
[7] Grinter D C, Nicotra M, Thornton G. Acetic acid adsorption on anatase TiO2 (101)[J]. The Journal of Physical Chemistry C, 2012, 116(21): 11643–11651.
[8] Figoli A, Santoro S, Galiano F, et al. Pervaporation membranes,in: pervaporation, vapour permeation and membrane distillation[M]. Elsevier, 2015: 19–63.
[9] 王金渠, 杨建华, 陈赞,等. 沸石分子筛膜苛刻环境有机物脱水的研究进展[J]. 膜科学与技术, 2011, 31(03): 118–126.
[10] Gorri D, Urtiaga A, Ortiz I. Pervaporative recovery of acetic acid from an acetylation industrial effluent using commercial membranes[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 977–985.
[11] 祝春芳, 王忠铭, 袁振宏,等. 用于酯化反应的亲水性渗透汽化膜研究进展[J]. 膜科学与技术, 2011, 31(05): 94–99.
[12] Song Y, Pan F, Li Y, et al. Mass transport mechanisms within pervaporation membranes[J]. Frontiers of Chemical Science and Engineering, 2019, 13(3): 458–474.
[13] Bolto B, Tran T, Hoang M, et al. Crosslinked poly(vinyl alcohol) membranes[J]. Progress in Polymer Science, 2009, 34(9): 969–981.
[14] I??klan N, ?anl? O. Separation characteristics of acetic acid–water mixtures by pervaporation using poly(vinyl alcohol) membranes modified with malic acid[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(9): 1019–1027.
[15] Rao P S, Krishnaiah A, Smitha B, et al. Separation of acetic acid/water mixtures by pervaporation through poly(vinyl alcohol)–sodium alginate blend membranes[J]. Separation Science and Technology, 2006, 41(5): 979–999.
[16] Chaudhari S, Kwon Y, Moon M, et al. Water-selective membrane from crosslinking of poly(vinyl alcohol) with tartaric acid and its pervaporation separation characteristics for a water/acetic acid mixture: water-selective membrane from crosslinking of PVA with TA[J]. Bulletin of the Korean Chemical Society, 2015, 36(10): 2534–2541.
[17] Chen J H, Liu Q L, Zhu A M, et al. Dehydration of acetic acid by pervaporation using SPEK-C/PVA blend membranes[J]. Journal of Membrane Science, 2008, 320(1–2): 416–422.
[18] Banerjee A, Ray S K. PVA modified filled copolymer membranes for pervaporative dehydration of acetic acid-systematic optimization of synthesis and process parameters with response surface methodology[J]. Journal of Membrane Science, 2018, 549: 84–100.
[19] Huang R Y M, Pal R, Moon G Y. Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures[J]. Journal of Membrane Science, 1999, 160(1): 101–113.
[20] Wang Y, Chung T S, Gruender M. Sulfonated polybenzimidazole membranes for pervaporation dehydration of acetic acid[J]. Journal of Membrane Science, 2012, 415–416: 486–495.
[21] Lee J-Fwu, Wang Y-Chieh. Dehydration of acetic acid/water mixture by pervaporation through a chemically modified poly(4-methyl-l-pentene) membrane[J]. Separation Science and Technology, 1998, 33(2): 187–200.
[22] Wang Y-C, Li C-L, Chang P-F, et al. Separation of water–acetic acid mixture by pervaporation through plasma-treated asymmetric poly(4-methyl-1-pentene) membrane and dip-coated with polyacrylic acid[J]. Journal of Membrane Science, 2002, 208(1–2): 3–12.
[23] Polotskaya G, Pulyalina A, Lebedev V, et al. Novel view at hybrid membranes containing star macromolecules using neutron scattering and pervaporation dehydration of acetic acid[J]. Materials & Design, 2020, 186: 108352.
[24] Faykov I I, Rostovtseva V A, Tyan N S, et al. A deep eutectic solvent as a modifier of polyphenylene oxide membranes for acetic acid dehydration[J]. Membranes and Membrane Technologies, 2021, 3(2): 124–130.
[25] Bowen T C, Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes[J]. Journal of Membrane Science, 2004, 245(1–2): 1–33.
[26] Vane L M. Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation: removal of water from industrial solvents by pervaporation and vapor permeation[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(2): 343–365.
[27] Zhu M-H, Xia S-L, Hua X-M, et al. Rapid preparation of acid-stable and high dehydration performance mordenite membranes[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 19168–19174.
[28] Chen Z, Li Y, Yin D, et al. Microstructural optimization of mordenite membrane for pervaporation dehydration of acetic acid[J]. Journal of Membrane Science, 2012, 411–412: 182–192.
[29] Chen Z, Yin D, Li Y, et al. Functional defect-patching of a zeolite membrane for the dehydration of acetic acid by pervaporation[J]. Journal of Membrane Science, 2011, 369(1–2): 506–513.
[30] Sato K, Sugimoto K, Kyotani T, et al. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution[J]. Journal of Membrane Science, 2011, 385–386: 20–29.
[31] Zhu M-H, Hua X-M, Liu Y-S, et al. Influences of synthesis parameters on preparation of acid-stable and reproducible mordenite membrane[J]. Industrial & Engineering Chemistry Research, 2016, 55(47): 12268–12275.
[32] 陈川, 张春, 江兴惠,等. 四通道中空纤维丝光沸石膜的制备与表征[J]. 膜科学与技术, 2018, 38(05): 15–22.
[33] Zhu M-H, Kumakiri I, Tanaka K, et al. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Microporous and Mesoporous Materials, 2013, 181: 47–53.
[34] Li G, Kikuchi E, Matsukata M. A study on the pervaporation of water–acetic acid mixtures through ZSM-5 zeolite membranes[J]. Journal of Membrane Science, 2003, 218(1–2): 185–194.
[35] Yang J, Li L, Li W, et al. Tuning aluminum spatial distribution in ZSM-5 membranes: a new strategy to fabricate high performance and stable zeolite membranes for dehydration of acetic acid[J]. Chemical Communications., 2014, 50(93): 14654–14657.
[36] Sun W, Wang X, Yang J, et al. Pervaporation separation of acetic acid–water mixtures through Sn-substituted ZSM-5 zeolite membranes[J]. Journal of Membrane Science, 2009, 335(1–2): 83–88.
[37] Li S, Tuan V A, Noble R D, et al. A Ge-substituted ZSM-5 zeolite membrane for the separation of acetic acid from water[J]. Industrial & Engineering Chemistry Research, 2001, 40(26): 6165–6171.
[38] Hu N, Li Y, Zhong S, et al. Fluoride-mediated synthesis of high-flux chabazite membranes for pervaporation of ethanol using reusable macroporous stainless steel tubes[J]. Journal of Membrane Science, 2016, 510: 91–100.
[39] Zhou H, Li Y, Zhu G, et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties[J]. Separation and Purification Technology, 2009, 65(2): 164–172.
[40] Luo Y, Raza W, Yang J, et al. Recent advances in acid-resistant zeolite T membranes for dehydration of organics[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1449–1457.
[41] Cui Y, Kita H, Okamoto K-I. Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability[J]. Journal of Membrane Science, 2004, 236(1–2): 17–27.
[42] Qiu H, Jiang J, Peng L, et al. Choline chloride templated CHA zeolite membranes for solvents dehydration with improved acid stability[J]. Microporous and Mesoporous Materials, 2019, 284: 170–176.
[43] Liu G, Jin W. Pervaporation membrane materials: recent trends and perspectives[J]. Journal of Membrane Science, 2021, 636: 119557.
[44] Raza W, Yang J, Wang J, et al. HCl modification and pervaporation performance of BTESE membrane for the dehydration of acetic acid/water mixture[J]. Separation and Purification Technology, 2020, 235: 116102.
[45] Asman G, ?anl? O. Characteristics of permeation and separation for acetic acid–water mixtures through poly(vinyl alcohol) membranes modified with poly(acrylic acid)[J]. Separation Science and Technology, 2003, 38(9): 1963–1980.
[46] Zhang W, Xu Y, Yu Z, et al. Separation of acetic acid/water mixtures by pervaporation with composite membranes of sodium alginate active layer and microporous polypropylene substrate[J]. Journal of Membrane Science, 2014, 451: 135–147.
[47] Cong S, Wang J, Wang Z, et al. Polybenzimidazole (PBI) and benzimidazole-linked polymer (BILP) membranes[J]. Green Chemical Engineering, 2021, 2(1): 44–56.
[48] Hu L, Bui V T, Huang L, et al. Facilely cross-linking polybenzimidazole with polycarboxylic acids to improve H2 /CO2 separation performance[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12521–12530.
[49] 夏玲玲, 王艳. 聚苯并咪唑(PBI)渗透汽化膜的研究进展[J]. 膜科学与技术, 2014, 34(05): 116–124.
[50] Lu M, Hu M Z. Novel porous ceramic tube-supported polymer layer membranes for acetic acid/water separation by pervaporation dewatering[J]. Separation and Purification Technology, 2020, 236: 116312.
[51] Yeom C-K, Lee K-H. Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde[J]. Journal of Membrane Science, 1996, 109(2): 257–265.
[52] Al‐ghezawi N, ?anl? O, I??klan N. Permeation and separation characteristics of acetic acid‐water mixtures by pervaporation through acrylonitrile and hydroxy ethyl methacrylate grafted poly(vinyl alcohol) membrane[J]. Separation Science and Technology, 2006, 41(13): 2913–2931.
[53] Kariduraganavar M Y, Kulkarni S S, Kittur A A. Pervaporation separation of water–acetic acid mixtures through poly(vinyl alcohol)-silicone based hybrid membranes[J]. Journal of Membrane Science, 2005, 246(1): 83–93.
[54] Dmitrenko M E, Penkova A V, Missyul A B, et al. Development and investigation of mixed-matrix PVA-fullerenol membranes for acetic acid dehydration by pervaporation[J]. Separation and Purification Technology, 2017, 187: 285–293.
[55] Moulik S, Nazia S, Vani B, et al. Pervaporation separation of acetic acid/water mixtures through sodium alginate/polyaniline polyion complex membrane[J]. Separation and Purification Technology, 2016, 170: 30–39.
[56] Badiger H, Shukla S, Kalyani S, et al. Thin film composite sodium alginate membranes for dehydration of acetic acid and isobutanol[J]. Journal of Applied Polymer Science, 2014, 131(6): 40018.
[57] Toti U S, Aminabhavi T M. Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water + acetic acid and water + isopropanol mixtures[J]. Journal of Membrane Science, 2004, 228(2): 199–208.
[58] Toti U S, Kariduraganavar M Y, Soppimath K S, et al. Sorption, diffusion, and pervaporation separation of water-acetic acid mixtures through the blend membranes of sodium alginate and guar gum-grafted-polyacrylamide[J]. Journal of Applied Polymer Science, 2002, 83(2): 259–272.
[59] Krishna Rao K S V, Vijaya Kumar Naidu B, Subha M C S, et al. Novel carbohydrate polymeric blend membranes in pervaporation dehydration of acetic acid[J]. Carbohydrate Polymers, 2006, 66(3): 345–351.
[60] Wang X. Modified alginate composite membranes for the dehydration of acetic acid[J]. Journal of Membrane Science, 2000, 170(1): 71–79.
[61] Teli S B, Gokavi G S, Sairam M, et al. Highly water selective silicotungstic acid (H4SiW12O40) incorporated novel sodium alginate hybrid composite membranes for pervaporation dehydration of acetic acid[J]. Separation and Purification Technology, 2007, 54(2): 178–186.
[62] Samanta H S, Ray S K, Das P, et al. Separation of acid-water mixtures by pervaporation using nanoparticle filled mixed matrix copolymer membranes[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(5): 608–622.
[63] Chen J H, Liu Q L, Zhu A M, et al. Dehydration of acetic acid using sulfonation cardo polyetherketone (SPEK-C) membranes[J]. Journal of Membrane Science, 2008, 308(1–2): 171–179.
[64] Huang R Y M, Moreira A, Notarfonzo R, et al. Pervaporation separation of acetic acid-water mixtures using modified membranes. I. blended polyacrylic acid (PAA)-nylon 6 membranes[J]. Journal of Applied Polymer Science, 1988, 35(5): 1191–1200.
[65] Huang S-C, Ball I J, Kaner R B. Polyaniline membranes for pervaporation of carboxylic acids and water[J]. Macromolecules, 1998, 31(16): 5456–5464.
[66] Althoff R, Schulz-Dobrick B, Schüth F, et al. Controlling the spatial distribution of aluminum in ZSM-5 crystals[J]. Microporous Materials, 1993, 1(3): 207–218.
[67] Yamanaka N, Itakura M, Kiyozumi Y, et al. Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution[J]. Microporous and Mesoporous Materials, 2012, 158: 141–147.
[68] Masuda T, Otani S, Tsuji T, et al. Preparation of hydrophilic and acid-proof silicalite-1 zeolite membrane and its application to selective separation of water from water solutions of concentrated acetic acid by pervaporation[J]. Separation and Purification Technology, 2003, 32(1–3): 181–189.
[69] Zhang Y, Chen S, Shi R, et al. Pervaporation dehydration of acetic acid through hollow fiber supported DD3R zeolite membrane[J]. Separation and Purification Technology, 2018, 204: 234–242.
[70] Kunishi H, Hagio T, Wada S, et al. Development of novel nanoporous hexagonal tungsten oxide membrane for separation of water/acetic acid mixtures via pervaporation[J]. Journal of Membrane Science, 2021, 620: 118860.
[71] Li G, Kikuchi E, Matsukata M. Separation of water–acetic acid mixtures by pervaporation using a thin mordenite membrane[J]. Separation and Purification Technology, 2003, 32(1–3): 199–206.
[72] 陈赞, 殷德宏, 王金渠. 功能化PVI/MOR杂化膜的制备及乙酸脱水分离性能[J]. 化工进展, 2009, 28(S1): 140–144.
[73] Sato K, Sugimoto K, Kyotani T, et al. Laminated mordenite/ZSM-5 hybrid membranes by one-step synthesis: preparation, membrane microstructure and pervaporation performance[J]. Microporous and Mesoporous Materials, 2012, 160: 85–96.
[74] Li Y, Zhu M, Hu N, et al. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures[J]. Journal of Membrane Science, 2018, 564: 174–183.
[75] Zhang Y, Qiu X, Hong Z, et al. All-silica DD3R zeolite membrane with hydrophilic-functionalized surface for efficient and highly-stable pervaporation dehydration of acetic acid[J]. Journal of Membrane Science, 2019, 581: 236–242.
[76] Kusumocahyo S P, Sudoh M. Pervaporation of acetic acid-water mixture using silica membrane prepared by sol-gel method[J]. Journal of Membrane Science, 2021, 620: 118860.
[77] Tsuru T, Shibata T, Wang J, et al. Pervaporation of acetic acid aqueous solutions by organosilica membranes[J]. Journal of Membrane Science, 2012, 421–422: 25–31.
[78] Kunishi H, Wada S, Kamimoto Y, et al. Synthesis of c-plane oriented hexagonal tungsten oxide membranes on tubular substrates and their acetic acid/water separation performances[J]. Membranes, 2021, 11(1): 38.
[79] Raza W, Wang J, Yang J, et al. Progress in pervaporation membranes for dehydration of acetic acid[J]. Separation and Purification Technology, 2021, 262: 118338.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号