离子单体界面聚合制备纳滤膜的研究进展
作者:彭华文,赵强
单位: 华中科技大学化学与化工学院,湖北 武汉 430074
关键词: 纳滤膜; 界面聚合; 离子单体; trade-off; 单体设计
出版年,卷(期):页码: 2021,41(6):213-225

摘要:
 纳滤在水处理和资源领域发挥重要作用,但其分离性能受到“trade-off”效应的制约。目前绝大部分纳滤膜通过界面聚合法制备,单体结构设计是制备高性能纳滤膜的关键。离子单体亲水性强、电荷密度高,在提高膜渗透性、选择性、抗污性、抗菌性等方面具有优势。本文从离子单体界面聚合的角度出发,介绍了离子单体的类型、特点以及将其引入纳滤膜的方法。阐述了离子单体对膜微观结构和表面性质的影响,总结了离子单体在提高膜渗透性、抗污性、抗菌性和资源回收中的应用,展望了新型离子单体的研究方向。
 Nanofiltration play an important role in water treatment and resource reuse, yet the "trade-off" effect restricts the attainment of high performance nanofiltration membranes. Since most nanofiltration membranes are prepared by interfacial polymerization, the design of new monomers is key to the preparation of high-performance membranes. Ionized monomers are widely used to enhance membrane permeability, fouling resistance and antibacterial properties due to their strong hydrophilicity and high charge density. Focusing on ionized monomers in interfacial polymerization, this review summarized recent progress in the design and preparation of nanofiltration membrane containing ionized monomers. The applications of ionized monomers in enhancing membrane permeability, fouling resistance, antibacterial properties and resource recycling were summarized. Opportunities of new monomers for preparing high-performance nanofiltration membranes were discussed.
彭华文(1996-),男,湖北武汉人,博士研究生,研究方向为高分子分离膜材料,E-mail:D202080168@hust.edu.cn。

参考文献:
 [1] Vorosmarty C J, McIntyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315):555-561.
[2] Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Sci Adv, 2016, 2(2):e1500323.
[3] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356:226-254.
[4] 赵长伟, 唐文晶, 贾文娟, 等. 纳滤去除水中新兴污染物的研究进展[J]. 膜科学与技术, 2021, 41(1):144-151.
[5] Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343):eaab0530.
[6] Zhang R, Tian J, Gao S, et al. How to coordinate the trade-off between water permeability and salt rejection in nanofiltration?[J]. J Mater Chem A, 2020, 8(18):8831-8847.
[7] Zhang H R, He Q M, Luo J Q, et al. Sharpening nanofiltration: strategies for enhanced membrane selectivity[J]. ACS Appl Mater Interfaces, 2020, 12(36):39948-39966.
[8] Guo S W, Wan Y H, Chen X R, et al. Loose nanofiltration membrane custom-tailored for resource recovery[J]. Chem Eng J, 2021, 409:127376.
[9] Zhang F L, Fan J B, Wang S T. Interfacial polymerization: from chemistry to functional materials[J]. Angew Chem Int Edit, 2020, 59(49):21840-21856.
[10] Culp T E, Khara B, Brickey K P, et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes[J]. Science, 2021, 371(6524):72-75.
[11] Karan S, Jiang Z W, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241):1347-1351.
[12] Raaijmakers M J T, Benes N E. Current trends in interfacial polymerization chemistry[J]. Prog Polym Sci, 2016, 63:86-142.
[13] Jimenez-Solomon M F, Song Q L, Jelfs K E, et al. Polymer nanofilms with enhanced microporosity by interfacial polymerization[J]. Nat Mater, 2016, 15(7):760-767.
[14] Ali Z, Ghanem B S, Wang Y, et al. Finely tuned submicroporous thin-film molecular sieve membranes for highly efficient fluid separations[J]. Adv Mater, 2020, 32(22):e2001132.
[15] Liu J, Hua D, Zhang Y, et al. Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules[J]. Adv Mater, 2018, 30(11):1705933.
[16] Peng H W, Zhang W H, Hung W S, et al. Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness[J]. Adv Mater, 2020, 32(23):e2001383.
[17] Wang Y L, Li B, Sarman S, et al. Microstructural and dynamical heterogeneities in ionic liquids[J]. Chem Rev, 2020, 120(13):5798-5877.
[18] 李银, 张林. 抗生物污染反渗透膜的研究进展[J]. 膜科学与技术, 2018, 38(2):111-118.
[19] Choudhury R R, Gohil J M, Mohanty S, et al. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes[J]. J Mater Chem A, 2018, 6(2):313-333.
[20] Schlenoff J B. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption[J]. Langmuir, 2014, 30(32):9625-9636.
[21] Liang Y Z, Zhu Y Z, Liu C, et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation[J]. Nat Commun, 2020, 11(1):2015.
[22] Guo S, Chen X, Wan Y, et al. Custom-tailoring loose nanofiltration membrane for precise biomolecule fractionation: new insight into post-treatment mechanisms[J]. ACS Appl Mater Interfaces, 2020, 12(11):13327.
[23] Tan Z, Chen S F, Peng X S, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388):518-523.
[24] 刘兴, 邓慧宇, 段龙繁, 等. 抗污染高分子纳滤膜研究进展[J]. 膜科学与技术, 2018, 38(5):113-121.
[25] Zhang R N, Liu Y N, He M R, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms[J]. Chem Soc Rev, 2016, 45(21):5888-5924.
[26] Liu Y, Zhang S L, Zhou Z, et al. Novel sulfonated thin-film composite nanofiltration membranes with improved water flux for treatment of dye solutions[J]. J Membr Sci, 2012, 394:218-229.
[27] Akbari A, Aliyarizadeh E, Rostami S M M, et al. Novel sulfonated polyamide thin-film composite nanofiltration membranes with improved water flux and anti-fouling properties[J]. Desalination, 2016, 377:11-22.
[28] Wang B A, Zhao D S. Polyamide layer sulfonation of a nanofiltration membrane to enhance perm-selectivity via regulation of pore size and surface charge[J]. Polym Adv Technol, 2021:1-11.
[29] Huang B Q, Xu Z L, Ding H, et al. Antifouling sulfonated polyamide nanofiltration hollow fiber membrane prepared with mixed diamine monomers of BDSA and PIP[J]. RSC Adv, 2017, 7(89):56629-56637.
[30] Rezania H, Vatanpour V, Shockravi A, et al. Study of synergetic effect and comparison of novel sulfonated and carboxylated bulky diamine-diol and piperazine in preparation of negative charge NF membrane[J]. Sep Purif Technol, 2019, 222:284-296.
[31] Cao X L, Zhou F Y, Cai J, et al. High-permeability and anti-fouling nanofiltration membranes decorated by asymmetric organic phosphate[J]. J Membr Sci, 2021, 617:9.
[32] Lv Z W, Hu J H, Zheng J F, et al. Antifouling and high flux sulfonated polyamide thin-film composite membrane for nanofiltration[J]. Ind Eng Chem Res, 2016, 55(16):4726-4733.
[33] Zheng J F, Yao Y J, Li M, et al. A non-MPD-type reverse osmosis membrane with enhanced permselectivity for brackish water desalination[J]. J Membr Sci, 2018, 565:104-111.
[34] Hu J H, Pu Y L, Ueda M, et al. Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalination and boron removal[J]. J Membr Sci, 2016, 520:1-7.
[35] Yao Y J, Li M, Cao X Z, et al. A novel sulfonated reverse osmosis membrane for seawater desalination: Experimental and molecular dynamics studies[J]. J Membr Sci, 2018, 550:470-479.
[36] Hu J H, Lv Z W, Xu Y Z, et al. Fabrication of a high-flux sulfonated polyamide nanofiltration membrane: Experimental and dissipative particle dynamics studies[J]. J Membr Sci, 2016, 505:119-129.
[37] Rezania J, Vatanpour V, Shockravi A, et al. Preparation of novel carboxylated thin-film composite polyamide-polyester nanofiltration membranes with enhanced antifouling property and water flux[J]. React Funct Polym, 2018, 131:123-133.
[38] Yu W H, Gan Z Q, Wang J R, et al. A novel negatively charged nanofiltration membrane with improved and stable rejection of Cr (VI) and phosphate under different pH conditions[J]. J Membr Sci, 2021:doi: https://doi.org/10.1016/j.memsci.2021.119756.
[39] Flemming H C, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life[J]. Nat Rev Microbiol, 2016, 14(9):563-575.
[40] Xiao H F, Chu C H, Xu W T, et al. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment[J]. J Membr Sci, 2019, 586:44.
[41] Peng H W, Tang Q Q, Tang S H, et al. Surface modified polyamide nanofiltration membranes with high permeability and stability[J]. J Membr Sci, 2019, 592:117386.
[42] He B Y, Peng H W, Chen Y, et al. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. J Membr Sci, 2020, 608:118202.
[43] Peng H, Zhao Q. A Nano‐heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Adv Funct Mater, 2021, 31(14):2009430.
[44] Battistel A, Palagonia M S, Brogioli D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Adv Mater, 2020, 32(23):e1905440.
[45] 徐萍, 钱晓明, 郭昌盛, 等. 用于盐湖卤水镁锂分离的纳滤技术研究进展[J]. 材料导报, 2019, 33(2):410-417.
[46] 计张, 张杰, 张志君, 等. 纳滤膜对高镁锂比卤水的分离性能研究[J]. 膜科学与技术, 2014, 34(3):79-85.
[47] Wu H, Lin Y, Feng W, et al. A novel nanofiltration membrane with [MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. J Membr Sci, 2020, 603:117997.
[48] Mu T, Zhang H Z, Sun J Y, et al. Three-channel capillary nanofiltration membrane with quaternary ammonium incorporated for efficient heavy metals removal[J]. Sep Purf Technol, 2020, 248:117133.
[49] Dey T K, Bindal R C, Prabhakar S, et al. Development, characterization and performance evaluation of positively-charged thin film-composite nanofiltration membrane containing fixed quaternary ammonium moieties[J]. Sep Sci Technol, 2011, 46(6):933-943.
[50] Fang C, Sun J, Zhang B, et al. Preparation of positively charged composite nanofiltration membranes by quaternization crosslinking for precise molecular and ionic separations[J]. J Colloid Interf Sci, 2018, 531:168-180.
[51] Fang L F, Zhou M Y, Cheng L, et al. Positively charged nanofiltration membrane based on cross-linked polyvinyl chloride copolymer[J]. J Membr Sci, 2019, 572:28-37.
[52] Lin C-E, Fang L F, Du S Y, et al. A novel positively charged nanofiltration membrane formed via simultaneous cross-linking/quaternization of poly(m-phenylene isophthalamide)/polyethyleneimine blend membrane[J]. Sep Purif Technol, 2019, 212:101-109.
[53] Ji Y L, Gu B X, An Q F, et al. Recent advances in the fabrication of membranes containing “Ion Pairs” for nanofiltration processes[J]. Polymers, 2017, 9(12):715.
[54] An Q F, Sun W D, Zhao Q, et al. Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers[J]. J Membr Sci, 2013, 431:171-179.
[55] Mi Y F, Zhao Q, Ji Y L, et al. A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance[J]. J Membr Sci, 2015, 490:311-320.
[56] Weng X D, Ji Y L, Ma R, et al. Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation[J]. J Membr Sci, 2016, 510:122-130.
[57] Mi Y F, Xu G, Guo Y S, et al. Development of antifouling nanofiltration membrane with zwitterionic functionalized monomer for efficient dye/salt selective separation[J]. J Membr Sci, 2020, 601:117795.
[58] Mi Y F, Zhao F Y, Guo Y S, et al. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance[J]. J Membr Sci, 2017, 541:29-38.
[59] Guo Y S, Weng X D, Wu B, et al. Construction of nonfouling nanofiltration membrane via introducing uniformly tunable zwitterionic layer[J]. J Membr Sci, 2019, 583:152-162.
[60] Li S L, Shan X, Zhao Y, et al. Fabrication of a novel nanofiltration membrane with enhanced performance via interfacial polymerization through the incorporation of a new zwitterionic diamine monomer[J]. ACS Appl Mater Interfaces, 2019, 11(45):42846-42855.
[61] Shan X Y, Li S L, Fu W M, et al. Preparation of high performance TFC RO membranes by surface grafting of small-molecule zwitterions[J]. J Membr Sci, 2020, 608:9.
[62] Li S L, Wu P F, Wang J T, et al. High-performance zwitterionic TFC polyamide nanofiltration membrane based on a novel triamine precursor[J]. Sep Purf Technol, 2020, 251:117380.
[63] Wang J, Zhang S, Wu P, et al. In situ surface modification of thin-film composite polyamide membrane with zwitterions for the enhanced chlorine-resistance and transport properties[J]. ACS Appl Mater Interfaces, 2019, 11(12):12043-12052.
[64] Deng L Y, Li S L, Qin Y W, et al. Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification[J]. J Membr Sci, 2021, 619:118564.
[65] Wang J, Wang Z, Liu Y, et al. Surface modification of NF membrane with zwitterionic polymer to improve anti-biofouling property[J]. J Membr Sci, 2016, 514:407-417.
[66] He Y R, Liu J T, Han G, et al. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal[J]. J Membr Sci, 2018, 555:299-306.
[67] Li X, Cao Y M, Kang G D, et al. Surface modification of polyamide nanofiltration membrane by grafting zwitterionic polymers to improve the antifouling property[J]. J Appl Polym Sci, 2014, 131(23):41144.
[68] Nadizadeh Z, Mahdavi H. Grafting of zwitterion polymer on polyamide nanofiltration membranes via surface-initiated RAFT polymerization with improved antifouling properties as a new strategy[J]. Sep Purif Technol, 2021, 254:117605.
[69] Sarkar P, Modak S, Karan S. Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration[J]. Adv Funct Mater, 2021, 31(3):8.
[70] Lin Y Q, Yao X S, Shen Q, et al. Zwitterionic copolymer-regulated interfacial polymerization for highly permselective nanofiltration membrane[J]. Nano Lett, 2021, 21(15):6525-6532.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号