中间层调控聚酰胺复合膜的研究进展
作者:赵岩雨,张瑜,宋向菊,江河清
单位: 1.中国科学院青岛生物能源与过程研究所,青岛266101;2.中国海洋大学材料科学与工程学院,青岛 266100
关键词: 聚酰胺复合膜;中间层;界面聚合;结构调控
出版年,卷(期):页码: 2021,41(6):226-235

摘要:
 聚酰胺复合膜在水处理领域具有重要的应用价值,同步提升复合膜的渗透性和选择性是目前研究人员关注的热点。通过在聚酰胺复合膜中引入有机高分子或纳米材料中间层,能对复合膜的微结构进行调控,进一步提高膜分离性能。本文首先对中间层改性的聚酰胺复合膜进行简要概述,分析了中间层对膜结构的影响机理(优化多孔基底、调控界面聚合反应速率、防止聚酰胺向基底渗透等),重点论述了中间层调控的聚酰胺复合膜研究进展及发展趋势,最后提出了该类聚酰胺复合膜所面临的挑战,对未来的研究前景进行了展望。
 Polyamide composite reverse osmosis membrane has important application value in water treatment field. To simultaneously improve permeability and selectivity is a hotspot concerned by relevant researchers. Introducing an interlayer into polyamide composite membranes, integrating the microstructure of polyamide selective layer can effectively improve the separation performance. In this review, the polyamide composite membrane with interlayer is briefly elaborated. Then, the influence mechanism of interlayer to membrane structure including optimizing porous substrate, controlling IP reaction rate, and inhibiting the penetration of polyamide into substrate is analyzed. Moreover, the research progress and development tendency of interlayer mediated polyamide membranes is reviewed. Finally, the remaining challenges faced by interlayer mediated polyamide membranes and the future prospects are put forward.
赵岩雨(1996-),男,山东淄博,硕士生,主要从事分离膜制备及改性研究,E-mail:zhaoyy318@163.com。

参考文献:
 [1] 赵长伟, 唐文晶, 贾文娟,等. 纳滤除去水中新兴污染物的研究进展[J]. 膜科学与技术, 2021, 41(1):144-151.
[2] Nunes SP, Culfaz-Emecen PZ, Ramon GZ, et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes[J]. J Membr Sci, 2020, 598, 117761.
[3] 高从堦, 周勇, 刘立芬. 反渗透海水淡化技术现状和展望[J]. 海洋技术学报, 2016, 35(1):1-14.
[4] Okamoto Y, Lienhard JH. How RO membrane permeability and other performance factors affect process cost and energy use: A review[J]. Desalination, 2019, 470:114064.
[5] Yang Z, Guo H, Tang C. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. J Membr Sci, 2019, 590:117297.
[6] Qasim M, Badrelzaman M, Darwish NN, et al. Reverse osmosis desalination: A state-of-the-art review[J]. Desalination, 2019, 459:59.
[7] 张瑞君,苏 松,高珊珊,等. 聚酰胺复合膜后处理改性的技术进展与研究展望[J]. 膜科学与技术, 2021, 41(1):160-167.
[8] Yang Z, Sun P, Li X, et al. A critical review on thin-film nanocomposite membranes with interlayered structure: mechanisms, recent developments, and environmental applications[J]. Environ Sci Technol, 2020, 54:15563-15583.
[9] Zhu X, Cheng X, Luo X, et al. Ultrathin thin-film composite polyamide membranes constructed on hydrophilic poly(vinyl alcohol) decorated support toward enhanced nanofiltration performance[J]. Environ Sci Technol, 2020, 54:6365–6374.
[10] Dai R, Li J, Wang Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review[J]. Adv Colloid Interface Sci, 2020, 282:102204.
[11] Yang Z, Zhou Z W, Guo H, et al. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance[J]. Environ Sci Technol, 2018, 52(16):9341-9349.
[12] Zhao W, Liu H, Liu Y, et al. Thin-film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube[J]. ACS Appl Mater Interfaces, 2018, 10:34464−34474.
[13] Wang J, Yang H, Wu M, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. J Mater Chem A, 2017, 5:16289–16295.
[14] Zhao B, Guo Z, Wang H, et al. Enhanced water permeance of a polyamide thin-film composite nanofiltration membrane with a metal-organic framework interlayer[J]. J Membr Sci, 2021, 625:119154.
[15] Yang X, Du Y, Zhang X, et al. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance[J]. Langmuir, 2017, 33(9):2318-2324.
[16] Karan S, Jiang Z, Livingston AG. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348:1347–1351.
[17] Razavi S R, Shakeri A, Babaheydari S, et al. High-performance thin film composite forward osmosis membrane on tannic acid/Fe3+ coated microfiltration substrate[J]. Chem Eng Res Des, 2020, 161:232–239.
[18] Zhang X, Lv Y, Yang H, et al. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance[J]. ACS Appl Mater Interfaces, 2016, 8(47):32512-32519.
[19] Wang M, Dong W, Guo Y, et al. Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy[J]. Desalination, 2021, 513:114836.
[20] Chen Y, Song X, Zhang N, et al. Polyethyleneimine-mediated polyamide composite membrane with high perm-selectivity for forward osmosis[J]. Macromol Mater Eng, 2021, 306:2000818.
[21] Sun H, Liu J, Luo X, et al. Fabrication of thin-film composite polyamide nanofiltration membrane based on polyphenol intermediate layer with enhanced desalination performance[J]. Desalination, 2020, 488:114525.
[22] Wu X, Li Y, Cui X, et al. Adsorption-assisted interfacial polymerization toward ultrathin active layers for ultrafast organic permeation[J]. ACS Appl Mater Interfaces, 2018, 10:10445–10453.
[23] Yang Z, Wang F, Guo H, et al. Mechanistic insights into the role of polydopamine interlayer toward improved separation performance of polyamide nanofiltration membranes[J]. Environ Sci Technol, 2020, 54:11611–11621.
[24] Shao D, Yang W, Xiao H, et al. Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine[J]. ACS Appl Mater Interfaces, 2020, 12:580–590.
[25] Zhu Y, Xie W, Gao S, et al. Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination[J]. Small, 2016, 12:5034–5041.
[26] Wu M, Lv Y, Yang H, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. J Membr Sci, 2016, 515:238-244.
[27] Zhou Z, Hu Y, Boo C, et al. High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer[J]. Environ Sci Tech Let, 2018, 5:243–248.
[28] Tang Y, Li S, Jia X, et al. Thin film composite forward osmosis membrane with single-walled carbon nanotubes interlayer for alleviating internal concentration polarization[J]. Polymers, 2020, 12(2):260.
[29] Wang Z, Fang W, Zhang F, et al. Ultrathin nanofiltration membrane from confined polymerization within the nanowire network for high efficiency divalent cation removal[J]. ACS Macro Letters, 2019, 8(10):1240–1246.
[30] Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline celluloseby acid hydrolysis[J]. Cellulose, 2006, 13:171.
[31] Guo C, Li N, Xu Z, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: “Drag” effect from carboxyl-containing negative interlayer[J]. Sep Purif Technol, 2020, 230:115567.
[32] Zhou Z, Ying Y, Peng X. High efficient thin-film composite membrane: Ultrathin hydrophilic polyamide film on macroporous superhydrophobic polytetrafluoroethylene substrate[J]. Appl Mater Today, 2017, 8:54–59.
[33] Zhang H, Xu Z, Shen Q. High-performance nanofiltration membrane intercalated by FeOOH nanorods for water nanofiltration - ScienceDirect[J]. Desalination, 2021, 498:114802.
[34] Cheng C, Li P, Shen K, et al. Integrated polyamide thin-film nanofibrous composite membrane regulated by functionalized interlayer for efficient water/isopropanol separation[J]. J Membr Sci, 2018, 553:70–81.
[35] Zhang J, Li S, Ren D, et al. Fabrication of ultra-smooth thin-film composite nanofiltration membrane with enhanced selectivity and permeability on interlayer of hybrid polyvinyl alcohol and graphene oxide[J]. Sep Purif Technol, 2021, 268:118649.
[36] Song X, Zhang Y, Abdel-Ghafar H, et al, Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis[J]. Chem Eng J, 2021, 412:128607.
[37] Yuan G, Su K, Jia K, et al. NGO/PA layer with disordered arrangement hybrid PPS composite membrane for desalination[J]. Desalination, 2020, 479:114211.
[38] Fu J, Das S, Xing G, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. J Am Chem Soc, 2016, 138:7673–7680.
[39] Li C, Li S, Zhang J, et al. Emerging sandwich-like reverse osmosis membrane with interfacial assembled covalent organic frameworks interlayer for highly-efficient desalination[J]. J Membr Sci, 2020, 604:118065.
[40] Jiang Y, Li S, Su J, et al. Two dimensional COFs as ultra-thin interlayer to build TFN hollow fiber nanofiltration membrane for desalination and heavy metal wastewater treatment[J]. J Membr Sci, 2021, 635:119523.
[41] Wang M, Guo W, Jiang Z, et al. Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization[J]. Chinese J Chem Eng, 2020, 28(4):1039–1045.
[42] Yuan J, Wu M, Wu H, et al. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes[J]. J Mater Chem A, 2019, 7:25641–25649.
[43] Xu D, Zhu X, Luo X, et al. MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport[J]. Environ Sci Technol, 2021, 55(2):1270-1278.
[44] Wu X, Ding M, Xu H, et al. Scalable Ti3C2Tx MXene interlayered forward osmosis membranes for enhanced water purification and organic solvent recovery[J]. ACS Nano, 2020, 14(7):9125-9135.
[45] Wen Y, Zhang X, Li X, et al. Metal-organic framework nanosheets for thin-film composite membranes with enhanced permeability and selectivity[J]. ACS Appl Nano Mater. 2020, 3:9238.
[46] Zhang X, Cheng F, Zhang H, et al. In-situ synthetic modified metal-organic framework (MZIF-8) as an interlayer of the composite membranes for ethanol dehydration[J]. J Membr Sci, 2020, 601:117916.
[47] Yang S, Li H, Zhang X, et al. Amine-functionalized ZIF-8 nanoparticles as interlayer for the improvement of the separation performance of organic solvent nanofiltration (OSN) membrane[J]. J Membr Sci, 2020, 614:118433.
[48] Navarro M, Benito J, Paseta L, et al. Thin film nanocomposite membrane with the minimum amount of MOF by the langmuir-schaefer technique for nanofiltration[J]. ACS Appl Mater Interfaces, 2018, 10:1278-1287.
[49] Paseta L, Antoran D, Coronas J, et al. 110th Anniversary: Polyamide/Metal−organic framework bilayered thin film composite membranes for the removal of pharmaceutical compounds from water[J]. Ind Eng Chem Res, 2019, 58:4222-4230.
[50] Wang Z, Liu H, Yue L, et al. Thin film nanocomposite forward osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube[J]. ACS Appl Mater Interfaces, 2018, 10:34464-34474.
[51] Wang Z, Wang Z, Lin S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nat Commun, 2018, 9(1):2004.
[52] Choi H G, Shah A A, Nam S E, et al. Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis[J]. Desalination, 2019, 449:41-49. 
[53] Wang D, Li J, Gao B, et al. Triple-layered thin film nanocomposite membrane toward enhanced forward osmosis performance[J]. J Membr Sci, 2021, 620:118879.
[54] Yu F, Shi H, Shi J, et al. High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer[J]. J Membr Sci, 2020, 616:118611.
[55] Sun P, Yang Z, Song X, et al. Interlayered forward osmosis membranes with Ti3C2Tx MXene and carbon nanotubes for enhanced municipal wastewater concentration[J]. Environ Sci Technol, 2021, doi.org/10.1021/acs.est.1c01968.
[56] Zhu C, Zhang X, Xu Z. Polyamide‐based membranes consisting of nanocomposite interlayers for high performance nanofiltration[J]. J Appl Polym Sci, 2021, 138(9):e49940.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号