基于增材制造技术的分离膜结构精细调控研究进展
作者:沈心1,王晶2,赵海洋3,姚之侃12,张林12
单位: 1. 浙江大学 化学工程与生物工程学院,膜与水处理教育部工程中心,杭州 310027; 2. 浙江大学宁波研究院,宁波 315100; 3. 火箭军工程设计研究院,北京 100011
关键词: 增材制造 结构调控 膜制备
出版年,卷(期):页码: 2021,41(6):236-242

摘要:
 增材制造技术是一种定制化加工具有精细结构产品的新兴技术,与分离膜制备过程相结合,可突破传统分离膜制备技术的瓶颈,实现对分离膜物理结构与化学组成的精细调控。本文通过对现有增材制造技术的详细介绍与比较,对现有基于增材制造技术的分离膜改性与制备相关工作的综述,总结增材制造技术与分离膜制备技术结合的优势,提出增材制造技术用于分离膜制备所存在的不足,为精细调控分离膜结构提供新的研究思路与实施策略。
  Additive manufacturing is an emerging material production technology for products with designed and precise construction. Combining the additive manufacturing technology with the membrane preparation, the bottleneck of traditional membrane preparation technology could be break through, the physical structure and chemical composition of the separation membrane could be controlled precisely. In this review, the existing additive manufacturing technologies were introduced in detail and compared with each other. The research progress on the modification and preparation of membrane by additive manufacturing were reviewed. Accordingly, the advantages and drawbacks of the application of additive manufacturing in membrane preparation were summarized. The findings in this review provide new insights and strategy on preparation of membranes with tunable precise construction.
沈心(1996-),女,浙江杭州人,硕士研究生,从事无机分离膜制备研究。

参考文献:
 [1] 王章慧, 方传杰, 程梁,等. 用于水中微污染物脱除的吸附型分离膜研究进展[J]. 膜科学与技术, 2021, 41(1): 123-133.
[2] 张雅琴, 张林, 侯立安. 膜分离技术在放射性废水处理中的应用[J]. 科技导报, 2015, 33(14): 24-27.
[3] Tang C Y, Yang Z, Guo H, et al. Potable water reuse through advanced membrane technology[J]. Environ Sci Technol, 2018, 52(18): 10215-10223.
[4] Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): 1138-1148.
[5] 俞三传, 高从堦. 浸入沉淀相转化法制膜[J]. 膜科学与技术, 2000(5): 36-41.
[6] Yao Z, Cui Y, Zheng K, et al. Composition and properties of porous blend membranes containing tertiary amine based amphiphilic copolymers with different sequence structures[J]. J Colloid Interface Sci, 2015, 437: 124-131.
[7] Yao Z, Yang Z, Guo H, et al. Highly permeable and highly selective ultrathin film composite polyamide membranes reinforced by reactable polymer chains[J]. J Colloid Interface Sci, 2019, 552: 418-425.
[8] 罗方, 闫康康, 王晶,等. 基于改性纳米纤维支撑层的复合正渗透膜[J]. 高校化学工程学报, 2020, 34(5): 1151-1158.
[9] 陈欢林, 瞿新营, 张林,等. 新型反渗透膜的研究进展[J]. 膜科学与技术, 2011, 31(3): 101-109.
[10] 周广瑞, 同帜, 王佳悦,等. 烧结温度对黄土基陶瓷膜支撑体性能的影响[J]. 膜科学与技术, 2019, 39(4): 69-75.
[11] Zou D, Fan W, Xu J, et al. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions[J]. J Membr Sci, 2021, 621: 118954.
[12] 同帜, 行静, 樊璐,等. 以硝酸铝为前驱体制备Al2O3薄膜及其表征[J]. 膜科学与技术, 2017, 37(5): 56-60, 74.
[13] Zou D, Chen X, Drioli E, et al. Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation[J]. J Membr Sci, 2020, 593: 117402.
[14] 朱宝库, 崔月, 王俊,等. 两亲高分子对超微滤膜的高性能化改性及应用[J]. 中国工程科学, 2014, 16(12): 87-93, 112.
[15] Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388): 518-521.
[16] Yang Y, Ma N, Wu X, et al. Induction of zeolite membrane formation by implanting zeolite crystals into the precursor of ceramic supports[J]. J Membr Sci, 2021, 635: 119452.
[17] Layani M, Wang X, Magdassi S. Novel materials for 3D printing by photopolymerization[J]. Adv Mater, 2018, 30(41): 1706344.
[18] Corrigan N, Yeow J, Judzewitsch P, et al. Seeing the light: Advancing materials chemistry through photopolymerization[J]. Angew Chem Int Ed, 2019, 58(16): 5170-5189.
[19] Ziaee M, Crane N B. Binder jetting: A review of process, materials, and methods[J]. Addit Manuf, 2019, 28: 781-801.
[20] Mostafaei A, Elliott A M, Barnes J E, et al. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges[J]. Prog Mater Sci, 2021, 119: 100707.
[21] Rocha V G, Saiz E, Tirichenko I S, et al. Direct ink writing advances in multi-material structures for a sustainable future[J]. J Mater Chem A, 2020, 8(31): 15646-15657.
[22] Tagliaferri S, Panagiotopoulos A, Mattevi C. Direct ink writing of energy materials[J]. Mater Adv, 2021, 2: 540-563.
[23] Syrlybayev D, Zharylkassyn B, Seisekulova A, et al. Optimisation of strength properties of FDM printed parts—A critical review[J]. Polymers, 2021, 13(10): 1587.
[24] Tao Y, Yin Q, Li P. An additive manufacturing method using large-scale wood inspired by laminated object manufacturing and plywood technology[J]. Polymers, 2021, 13(1): 144.
[25] Zhang G, Guo J, Chen H, et al. Organic mesh template-based laminated object manufacturing to fabricate ceramics with regular micron scaled pore structures[J]. J Eur Ceram Soc, 2021, 41(4): 2790-2795.
[26] Dikova T, Maximov J, Todorov V, et al. Optimization of photopolymerization process of dental composites[J]. Processes, 2021, 9(5): 779.
[27] Xu X, Awad A, Robles-Martinez P, et al. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications[J]. J Control Release, 2021, 329: 743-757.
[28] Mahmood M A, Popescu A C. 3D printing at micro-level: Laser-induced forward transfer and two-photon polymerization[J]. Polymers, 2021, 13(13): 2034.
[29] Hua S, Su J, Deng Z, et al. Microstructures and properties of 45S5® & BCP bioceramic scaffolds fabricated by digital light processing[J]. Addit Manuf, 2021, 45: 102074.
[30] Padmakumar M. Additive manufacturing of tungsten carbide hardmetal parts by selective laser melting (SLM), selective laser sintering (SLS) and binder jet 3d printing (BJ3DP) Techniques [J]. Lasers Manuf Mater Process, 2020, 7: 338-371.
[31] Huang S, Ye C, Zhao H, et al. Additive manufacturing of thin alumina ceramic cores using binder-jetting[J]. Addit Manuf, 2019, 29: 100802.
[32] Lv X, Ye F, Cheng L, et al. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment[J]. Ceram Int, 2019, 45(10): 12609-12624.
[33] Rahumi O, Sobolev A, Rath M K, et al. Nanostructured engineering of nickel cermet anode for solid oxide fuel cell using inkjet printing[J]. J Eur Ceram Soc, 2021, 41(8): 4528-4536.
[34] Kim C G, Han K S, Lee S, et al. Fabrication of biocompatible polycaprolactone–hydroxyapatite composite filaments for the FDM 3d printing of bone scaffolds[J]. Appl Sci, 2021, 11(14): 6351.
[35] Lee J Y, Tan W S, An J, et al. The potential to enhance membrane module design with 3D printing technology[J]. J Membr Sci, 2016, 499: 480-490.
[36] Li F, Meindersma W, Haan A D, et al. Novel spacers for mass transfer enhancement in membrane separations[J]. J Membr Sci, 2005, 253(1/2): 1-12.
[37] Balster J, Punt I, Stamatialis D, et al. Multi-layer spacer geometries with improved mass transport[J]. J Membr Sci, 2006, 282(1/2): 351-361.
[38] Shrivastava A, Kumar S, Cussler E. Predicting the effect of membrane spacers on mass transfer[J]. J Membr Sci, 2008, 323(2): 247-256.
[39] Liu J, Iranshahi A, Lou Y, et al. Static mixing spacers for spiral wound modules[J]. J Membr Sci, 2013, 442: 140-148.
[40] Low Z X, Chua Y T, Ray B M, et al. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques[J]. J Membr Sci, 2017, 523: 596-613.
[41] Seo J, Kushner D I, Hickner M A. 3D printing of micropatterned anion exchange membranes[J]. ACS Appl Mater Interfaces, 2016, 8(26): 16656-16663.
[42] Geng X, Wang J, Ye J, et al. Electrosprayed polydopamine membrane: Surface morphology, chemical stability and separation performance study[J]. Sep Purif Technol, 2020, 244: 116857.
[43] Wang J, Pei X, Liu G, et al. “Living” electrospray – A controllable polydopamine nano-coating strategy with zero liquid discharge for separation[J]. J Membr Sci, 2019, 586: 170-176.
[44] Yuan S, Strobbe D, Kruth J P, et al. Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation[J]. J Mater Chem A, 2017, 5(48): 25401-25409.
[45] Chowdhury M R, Steffes J, Huey B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361(6403): 682-685.
[46] Ma X H, Yang Z, Yao Z K, et al. Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes[J]. Environ Sci Technol Lett, 2018, 5(2): 117-122.
[47] Ma X H, Guo H, Yang Z, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. J Membr Sci, 2019, 570: 139-145.
[48] Yang S, Wang J, Fang L, et al. Electrosprayed polyamide nanofiltration membrane with intercalated structure for controllable structure manipulation and enhanced separation performance[J]. J Membr Sci, 2020, 602: 117971. 
[49] Geng X, Wang J, Ding Y, et al. Poly(vinyl alcohol)/polydopamine hybrid nanofiltration membrane fabricated through aqueous electrospraying with excellent antifouling and chlorine resistance[J]. J Membr Sci, 2021, 632: 119385.
[50] 张晟宁, 张昊, 黄志浩,等. 静电喷雾辅助交联制备超薄复合膜及其性能研究[J]. 膜科学与技术, 2021, 41(3): 29-36.
[51] Lyu Z, Ng T C A, Tran-Duc T, et al. 3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration[J]. J Membr Sci, 2020, 606: 118138.
[52] Dong Z, Schumann M F, Hokkanen M J, et al. Superoleophobic slippery lubricant-infused surfaces: Combining two extremes in the same surface[J]. Adv Mater, 2018, 30(45): 1803890.
[53] Ye Y, Du Y, Hu T, et al. 3D printing of integrated ceramic membranes by the DLP method[J]. Ind Eng Chem Res, 2021, 60(26): 9368–9377.
[54] Liu Y, Zhu W, Guan K, et al. Preparation of high permeable alumina ceramic membrane with good separation performance via UV curing technique[J]. RSC Adv, 2018, 8(24): 13567-13577.
[55] Chen L, Guan K, Zhu W, et al. Preparation and mechanism analysis of high performance ceramic membrane by spray coating[J]. RSC Adv, 2018, 8(70): 39884-39892.
[56] Chen Z, Zhang D, Peng E, et al. 3D-printed ceramic structures with in situ grown whiskers for effective oil/water separation[J]. Chem Eng J, 2019, 373: 1223-1232.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号