有机溶剂纳滤在石油化工中的应用进展
作者:王文奇,陈义浩,李文鹏,王景涛
单位: 郑州大学 化工学院,郑州 450001
关键词: 有机溶剂纳滤;耐溶剂纳滤;膜分离;石油化工;应用进展
出版年,卷(期):页码: 2021,41(6):243-250

摘要:
 有机溶剂纳滤(OSN)是一种用于高效分离分子量为200~1000的溶质和有机溶剂的新型膜分离技术。相比传统分离技术,OSN具有能耗低、污染少和分离效率高等突出优势。因此,OSN在石油化工中的溶剂回收、含油废水处理、油品纯化等方面得到了广泛应用。本文综述了近年来OSN膜分离技术在石油化工领域的应用及研究进展,包括典型膜分离工艺流程、膜选择与设计开发、膜分离性能等,分析了OSN所面临的挑战,并对未来的发展前景进行展望。
 Organic solvent nanofiltration (OSN), a new membrane separation technology, is used for efficient separation of solute with molecular weight of 200 ~ 1000 from organic solvents. Compared with traditional separation technology, OSN has advantages of low energy consumption, less pollution, and high separation efficiency. Therefore, OSN has been widely used in petrochemical industry, such as solvent recovery, oil waste water treatment, and oil purification, etc. In this work, the recent applications and research progress of OSN membrane separation technology in petrochemical field were reviewed including, typical membrane separation processes, the selection and design development of membrane, separation performance of membrane, etc. The challenges faced by OSN and the future development prospects were also analyzed and anticipated.
王文奇(1997-),男,河南洛阳人,硕士研究生,研究方向为膜分离技术的应用,E-mail: wangwenqi2335@163.com。

参考文献:
 [1]袁晴棠. 石化工业发展概况与展望[J]. 当代石油石化, 2019, 27(07): 1-6.
[2]陈翠仙, 郭红霞, 秦培勇, 等. 膜分离[M]// 北京: 化学工业出版社, 2017: 1-13.
[3]Vandezande P, Gevers L E, Vankelecom I F. Solvent resistant nanofiltration: separating on a molecular level[J]. Chem Soc Rev, 2008, 37(2): 365-405.
[4]Szekely G, Jimenez-Solomon M F, Marchetti P, et al. Sustainability assessment of organic solvent nanofiltration: from fabrication to application[J]. Green Chem, 2014, 16(10): 4440-4473.
[5]Cheng X Q, Zhang Y L, Wang Z X, et al. Recent advances in polymeric solvent-resistant nanofiltration membranes[J]. Adv Polym Tech, 2014, 33(1): 21455.
[6]陈雪, 谷景华. 无机纳滤膜的应用[J]. 膜科学与技术, 2013, 33(3): 108-112.
[7]郭翔宇. 面向分离应用的金属-有机骨架材料/聚合物混合基质膜制备研究[D]. 北京: 北京化工大学, 2017.
[8]徐艳超. 新型聚酰亚胺基耐溶剂纳滤膜的构筑及其分离性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[9]Ren D, Ren S, Lin Y, et al. Recent developments of organic solvent resistant materials for membrane separations[J]. Chemosphere, 2021, 271: 129425.
[10]杨青松, 吕罡, 田阳. 酮苯脱蜡技术工业生产现状及改进措施[J]. 当代化工, 2019, 48(11): 2702-2705.
[11]孙凤龙. 国内润滑油基础油生产技术进展[J]. 能源化工, 2018, 39(03): 41-45.
[12]Gould R M, White L S, Wildemuth C R. Membrane separation in solvent lube dewaxing[J]. Environ Prog, 2001, 20(1): 12-16.
[13]White L S, Nitsch A R. Solvent recovery from lube oil filtrates with a polyimide membrane [J]. J Membr Sci, 2000, 179(1-2): 267-274.
[14]Namvar-Mahboub M, Pakizeh M, Davari S. Preparation and characterization of UZM-5/polyamide thin film nanocomposite membrane for dewaxing solvent recovery[J]. J Membr Sci, 2014, 459: 22-32.
[15]Kong Y, Shi D, Yu H, et al. Separation performance of polyimide nanofiltration membranes for solvent recovery from dewaxed lube oil filtrates[J]. Desalination, 2006, 191(1-3): 254-261.
[16]Xin Y, Yin F. Influence of water on the recovery of lube oil dewaxing solvent using P84 polyimide membrane: A combination of experiment and molecular simulation[J]. ChemistrySelect, 2020, 5(6): 2094-2102.
[17]Monjezi S, Soltanieh M, Sanford A C, et al. Polyaniline membranes for nanofiltration of solvent from dewaxed lube oil[J]. Sep Sci Technol, 2018, 54(5): 795-802.
[18]Xin Y, Yin F. A combined experimental and molecular simulation study of lube oil dewaxing solvent recovery using membrane[J]. Sep Purif Technol, 2021, 261: 118278.
[19]李文鹏, 王景涛, 武文佳, 等. 一种低能耗膜分离方法及配套装置[P]. 中国专利, 112370969A. 2021-02-19.
[20]王奇. 超薄稳定的有机-无机层状复合膜的制备及其在己烷脱蜡中的应用[D]. 郑州: 郑州大学, 2021.
[21]Gharehbakhsh H, Panahi H A, Toosi M R, et al. Application of polyamide thin-film composite layered on polysulfone-GO/TiO2 mixed matrix membranes for removal of nitrotoluene derivatives from petrochemical wastewaters[J]. Environ Sci Pollut Res, 2020, 27(34): 42481-42494.
[22]王长青, 张西华, 宁朋歌, 等. 含油废水处理工艺研究进展及展望[J]. 化工进展, 2021, 40(1): 451-462.
[23]Adham S, Hussain A, Minier-Matar J, et al. Membrane applications and opportunities for water management in the oil and gas industry[J]. Desalination, 2018, 440(SI): 2-17.
[24]Park E, Barnett S M. Oil/water separation using nanofiltration membrane technology[J]. Sep Sci Technol, 2001, 36(7): 1527-1542.
[25]Torres J J, Cuello M, Ochoa N A, et al. Biodiesel wastewater treatment using nanofiltration membranes[J]. Process Saf Environ Prot, 2021, 148: 825-833.
[26]Rahimpour A, Rajaeian B, Hosienzadeh A, et al. Treatment of oily wastewater produced by washing of gasoline reserving tanks using self-made and commercial nanofiltration membranes[J]. Desalination, 2011, 265(1-3): 190-198.
[27]Kang X, Cheng Y, Wen Y, et al. Bio-inspired co-deposited preparation of GO composite loose nanofiltration membrane for dye contaminated wastewater sustainable treatment[J]. J Hazard Mater, 2020, 400: 123121.
[28]Kong F X, Yang Z Y, Yue L P, et al. Nanofiltration membrane with substrate incorporated amine-functionalized graphene oxide for enhanced petrochemical wastewater and shale gas produced water desalination[J]. Desalination, 2021, 517: 115246.
[29]Wu Y, Fu C F, Huang Q, et al. 2D Heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes[J]. Acs Nano, 2021, 15(4): 7586-7595.
[30]Ebrahimi M, Willershausen D, Ashaghi K S, et al. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment[J]. Desalination, 2010, 250(3): 991-996.
[31]Tanudjaja H J, Hejase C A, Tarabara V V, et al. Membrane-based separation for oily wastewater: A practical perspective[J]. Water Res, 2019, 156: 347-365.
[32]Zhou M, Chen J, Zhou W, et al. Developing composite nanofiltration membranes with highly stable antifouling property based on hydrophilic roughness[J]. Sep Purif Technol, 2021, 256: 117799.
[33]Zhang R, Li Y, Su Y, et al. Engineering amphiphilic nanofiltration membrane surfaces with a multi-defense mechanism for improved antifouling performances[J]. J Mater Chem A, 2016, 4(20): 7892-7902.
[34]Wu Z, Zhang C, Peng K, et al. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front Env Sci Eng, 2018, 12(3): 15.
[35]McCool B A, Bhandari A D, Joshi Y V. Boiling free fractionation of hydrocarbon streams utilizing a membrane cascade[P]. US Pat, 20190367820A1. 2019-05-28.
[36]Thompson K A, Mathias R, Kim D, et al. N-Aryl-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures[J]. Science, 2020, 369(6501): 310.
[37]韩晓琳, 张鹏, 吕雉, 等. 烃重组汽油与催化重整汽油的PONA分析及其组成对比[J]. 工业催化, 2021, 29(04): 68-72.
[38]Tarleton E S, Robinson J P, Low J S. Nanofiltration: A technology for selective solute removal from fuels and solvents[J]. Chem Eng Res Des, 2009, 87(3): 271-279.
[39]Othman R, Mohammad A W, Ismail M, et al. Application of polymeric solvent resistant nanofiltration membranes for biodiesel production[J]. J Membr Sci, 2010, 348(1-2): 287-297.
[40]Torres J J, Toledo Arana J, Ochoa N A, et al. Biodiesel purification using polymeric nanofiltration composite membranes highly resistant to harsh conditions[J]. Chem Eng Technol, 2018, 41(2): 253-260.
[41]吴巍. 芳烃联合装置生产技术进展及成套技术开发[J]. 石油学报(石油加工), 2015, 31(02): 275-281.
[42]张方方. 大型芳烃联合装置在炼化一体化加工方案中的优化设计[J]. 石油炼制与化工, 2021, 52(03): 99-104.
[43]Liu H X, Wang N X, Zhao C, et al. Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures - A review[J]. Chin J Chem Eng, 2018, 26(1): 1-16.
[44]Hao L, Cui X L, Wu X L, et al. High-flux and solvent-selective membranes with aromatic functionalities and dual-layer structures[J]. J Appl Polym Sci, 2021, 139(1): app51418.
[45]White L S, Wildemuth C R. Aromatics enrichment in refinery streams using hyperfiltration[J]. Ind Eng Chem Res, 2006, 45(26): 9136-9143.
[46]White L S. Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes[J]. J Membr Sci, 2006, 286(1-2): 26-35.
[47]Upadhyaya L, Chiao Y H, Wickramasinghe S R, et al. Cu(I/II) metal-organic frameworks incorporated nanofiltration membranes for organic solvent separation[J]. Membranes, 2020, 10(11): 313.
[48]Long Y, Wang K, Xiang G, et al. Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors[J]. Adv Mater, 2017, 29(16): 1606093.
[49]Kung G, Jiang L Y, Wang Y, et al. Asymmetric hollow fibers by polyimide and polybenzimidazole blends for toluene/iso-octane separation[J]. J Membr Sci, 2010, 360(1-2): 303-314.
[50]武亚伟. 芳烃/烷烃渗透汽化膜材料的分子设计及合成[D]. 大连: 大连理工大学, 2020.
[51]Jue M L, Koh D Y, McCool B A, et al. Enabling Widespread Use of Microporous Materials for Challenging Organic Solvent Separations[J]. Chem Mater, 2017, 29(23): 9863-9876. 
[52]Van Der Gryp P, Barnard A, Cronje J P, et al. Separation of different metathesis Grubbs-type catalysts using organic solvent nanofiltration[J]. J Membr Sci, 2010, 353(1-2): 70-77.
[53]Treffry-Goatley K, Gilron J. The application of nanofiltration membranes to the treatment of industrial effluent and process streams[J]. Filtr Sep, 30(1): 63-66.
[54] Li Y, Wei J, Wang C, et al. Comparison of phenol removal in synthetic wastewater by NF or RO membranes[J]. Desalin Water Treat, 2010, 22(1-3): 211-219.
[55]Livingston A G, Osborne C G. A process for deacidifying crude oil[P]. Eur Pat, WO2002050212A3. 2002-06-27.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号