双疏膜制备技术研究进展
作者:卢 鑫,周 勇,高从堦
单位: 浙江工业大学膜分离与水科学技术研究院, 杭州 310014
关键词: 双疏性;膜;制备技术
出版年,卷(期):页码: 2021,41(6):261-268

摘要:
 双疏表面的研究是目前材料特性研究的热点之一,在分离膜领域,双疏膜的研究主要集中在膜蒸馏方面,用于处理含低表面张力液体的废水,具有分离效率高、抗污染性强和易清洁等优点。本文重点综述了静电纺丝法、浸涂法、喷涂法、等离子体处理等双疏膜材料的制备技术,并简要介绍了双疏膜在膜蒸馏和空气过滤领域的应用。最后,对这几类常见的双疏膜表面构筑技术的优势与不足之处进行了总结,并对双疏膜材料的应用和发展进行了展望。
 The research of amphiphobic surface is one of the hotspots of material properties at present.In the field of separation membranes, the research of amphiphobic membrane mainly focuses on membrane distillation, which is used to treat wastewater containing low surface tension liquids, with high separation efficiency and strong anti-pollution and easy to clean and other advantages. This article focuses on the preparation technology of amphiphobic membrane materials, including electrospinning, dip coating, spraying, plasma treatment, etc.The application of amphiphobic membranes in the fields of membrane distillation and air filtrationis briefly introduced. Finally, the advantages and disadvantages of these common types of amphiphobic membrane surface construction technologies are summarized, and the application and development of amphiphobic membrane materials are prospected.
卢鑫(1996-),女,浙江宁波人,硕士生,从事分离膜制备及改性研究,E-mail:2111901104@zjut.edu.cn.

参考文献:
 [1] Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus Leaf[J]. Adv Mater, 2008, 20(21): 4049-4054.
[2] Bhushan B, Her E K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal[J]. Langmuir, 2010, 26(11): 8207-8217.
[3] Bush J W M, Hu D L, Prakash M. The integument of water-walking arthropods: form and function[M] //  USA: Insect Mechanics and Control, 2007: 117-192.
[4] Tian Y, Liu Y, Su Z, et al. Biomimetic brushlike slippery coatings with mechanically robust, self-cleaning, and icephobic properties[J]. ACS Appl Mater Interfaces, 2020, 12(48): 54041-54052.
[5] Qu M, Ma X, He J, et al. Facile selective and diverse fabrication of superhydrophobic, superoleophobic-superhydrophilic and superamphiphobic materials from Kaolin[J]. ACS Appl Mater Interfaces, 2017, 9(1): 1011-1020.
[6] Ou X, Cai J, Tian J, et al. Superamphiphobic surfaces with self-cleaning and antifouling properties by functionalized chitin nanocrystals[J]. ACS Sustain Chem Eng, 2020, 8(17): 6690-6699.
[7] Arslan O, Aytac Z, Uyar T. Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19747-19754.
[8] Wang T, Cui J, Ouyang S, et al. A new approach to understand the cassie state of liquids on superamphiphobic materials[J]. Nanoscale, 2016, 8(5): 3031-3039.
[9] Zhang B, Zeng Y, Wang J, et al. Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency[J]. Mater Des, 2020, 188: 108479.
[10] Liu W, Liang J, Yang G, et al. Novel strategy to prepare hierarchically porous ceramic microspheres via a self-assembly method on tunable superamphiphobic surfaces[J]. ACS Appl Mater Interfaces, 2020, 12(40): 45429-45436.
[11] Paven M, Fuchs R, Yakabe T, et al. Mechanical properties of highly porous super liquid-repellent surfaces[J]. Adv Funct Mater, 2016, 26(27): 4914-4922.
[12] Su C, Lu C, Cao H, et al. Fabrication and post-treatment of nanofibers-covered hollow fiber membranes for membrane distillation[J]. J Membr Sci, 2018, 562: 38-46.
[13] Su C, Li Y, Cao H, et al. Novel PTFE hollow fiber membrane fabricated by emulsion electrospinning and sintering for membrane distillation[J]. J Membr Sci, 2019, 583: 200-208.
[14] Xu G R, An X C, Das R, et al. Application of electrospun nanofibrous amphiphobic membrane using low-cost poly (ethylene terephthalate) for robust membrane distillation[J]. J Water Process Eng, 2020, 36: 101351.
[15] Ouyang S, Wang T, Zhong L, et al. Fabrication of hierarchical feather-mimetic polymer nanofibres[J]. Appl Surf Sci, 2018, 427: 471-479.
[16] Huang Y X, Wang Z, Hou D, et al. Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation[J]. J Membr Sci, 2017, 531: 122-128.
[17] Zhu X, Feng S, Zhao S, et al. Perfluorinated superhydrophobic and oleophobic SiO2@PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification[J]. J Membr Sci, 2020, 594: 117473.
[18] Lu C, Su C, Cao H, et al. Nanoparticle-free and self-healing amphiphobic membrane for anti-surfactant-wetting membrane distillation[J]. J Environ Sci (China), 2021, 100: 298-305.
[19] Wang H, Zhou H, Niu H, et al. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance[J]. Adv Mater Interfaces, 2015, 2(4):1400506.
[20] Wang Y, Lin F, Dong Y, et al. A multifunctional polymeric nanofilm with robust chemical performances for special wettability[J]. Nanoscale, 2016, 8(9): 5153-5161.
[21] Luo Z, Li Y, Duan C, et al. Fabrication of a superhydrophobic mesh based on PDMS/SiO2 nanoparticles/PVDF microparticles/KH-550 by one-step dip-coating method[J]. RSC Advances, 2018, 8(29): 16251-16259.
[22] Yan S, Dong K, Lu J, et al. Amphiphobic triboelectric nanogenerators based on silica enhanced thermoplastic polymeric nanofiber membranes[J]. Nanoscale, 2020, 12(7): 4527-4536.
[23] Khan A A, Siyal M I, Lee C-K, et al. Hybrid organic-inorganic functionalized polyethersulfone membrane for hyper-saline feed with humic acid in direct contact membrane distillation[J]. Sep Purifi Technol, 2019, 210: 20-28.
[24] Fan H, Gao A, Zhang G, et al. A facile strategy towards developing amphiphobic polysulfone membrane with double Re-entrant structure for membrane distillation[J]. J Membr Sci, 2020, 602: 117933.
[25] Boo C, Lee J, Elimelech M. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation[J]. Environ Sci Technol, 2016, 50(22): 12275-12282.
[26] Zheng R, Chen Y, Wang J, et al. Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation[J]. J Membr Sci, 2018, 555: 197-205.
[27] Chen L H, Huang A, Chen Y R, et al. Omniphobic membranes for direct contact membrane distillation: Effective deposition of zinc oxide nanoparticles[J]. Desalination, 2018, 428: 255-263.
[28] Xu C, Fang J, Low Z-X, et al. Amphiphobic PFTMS@nano-SiO2/ePTFE membrane for oil aerosol removal[J]. Ind Eng Chem Res, 2018, 57(31): 10431-10438.
[29] Dong J, Wang Q, Zhang Y, et al. Colorful superamphiphobic coatings with low sliding angles and high durability based on natural nanorods[J]. ACS Appl Mater Interfaces, 2017, 9(2): 1941-1952.
[30] Li J, Yan L, Ouyang Q, et al. Facile fabrication of translucent superamphiphobic coating on paper to prevent liquid pollution[J]. Chem Eng J, 2014, 246: 238-243.
[31] Zhang H, Ji X, Liu L, et al. Versatile, mechanochemically robust, sprayed superomniphobic coating enabling low surface tension and high viscous organic liquid bouncing[J]. Chem Eng J, 2020, 402: 126160.
[32] Ai J, Guo Z. Facile preparation of a superamphiphobic fabric coating with hierarchical TiO2 particles[J]. New J Chem, 2020, 44(44): 19192-19200.
[33] Sun Y M, Huang W F, Chang C C. Spray-coated and solution-cast ethylcellulose pseudolatex membranes[J]. J Membr Sci, 1999, 157: 159-170.
[34] Li X, Shan H, Cao M, et al. Facile fabrication of omniphobic PVDF composite membrane via a waterborne coating for anti-wetting and anti-fouling membrane distillation[J]. J Membr Sci, 2019, 589: 117262.
[35] Yu H Y, He X C, Liu L Q, et al. Surface modification of poly(propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2 plasma treatment[J]. Plasma Process Polym, 2008, 5(1): 84-91.
[36] Feng S, Zhong Z, Wang Y, et al. Progress and perspectives in PTFE membrane: Preparation, modification, and applications[J]. J Membr Sci, 2018, 549: 332-349.
[37] Chul Woo Y, Chen Y, Tijing L D, et al. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation[J]. J Membr Sci, 2017, 529: 234-242.
[38] Yoon Y I, Moon H S, Lyoo W S, et al. Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment[J]. Carbohydr Polym, 2009, 75(2): 246-250.
[39] Cuddy M F, Fisher E R. Contributions of CF and CF2 Species to fluorocarbon film composition and properties for C(x)F(y) plasma-enhanced chemical vapor deposition[J]. ACS Appl Mater Interfaces, 2012, 4(3): 1733-1741.
[40] Feng S, Zhong Z, Zhang F, et al. Amphiphobic polytetrafluoroethylene membranes for efficient organic aerosol removal[J]. ACS Appl Mater Interfaces, 2016, 8(13): 8773-8781.
[41] Martin S, Brown P S, Bhushan B. Fabrication techniques for bioinspired, mechanically-durable, superliquiphobic surfaces for water, oil, and surfactant repellency[J]. Adv Colloid Interface Sci, 2017, 241: 1-23.
[42] Wu X Q, Wu X, Wang T Y, et al. Omniphobic surface modification of electrospun nanofiber membrane via vapor deposition for enhanced anti-wetting property in membrane distillation[J]. J Membr Sci, 2020, 606:118075.
[43] Huang A, Chen L H, Chen C H, et al. Carbon dioxide capture using an omniphobic membrane for a gas-liquid contacting process[J]. J Membr Sci, 2018, 556: 227-237.
[44] Zhu P, Kong T, Tang X, et al. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating[J]. Nat Commun, 2017, 8: 15823.
[45] Chen L H, Chen Y R, Huang A, et al. Nanostructure depositions on alumina hollow fiber membranes for enhanced wetting resistance during membrane distillation[J]. J Membr Sci, 2018, 564: 227-236.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号