电化学能源转化过程的离子膜研究进展
作者:万 磊,徐子昂,王培灿, 许 琴,吴 洪, 刘 凯, 王新宇,王保国
单位: 1.清华大学化学工程系,北京100084;2.天津大学化工学院,天津 300350
关键词: 离子膜;燃料电池;电解水;氢能
出版年,卷(期):页码: 2021,41(6):298-310

摘要:
 在清洁高效的可再生能源和新型电力体系建设过程,大规模电化学能源转化过程十分重要。电化学能源转化装备,包括燃料电池、液流电池、电解水制氢,以及二氧化碳电化学还原等过程,不仅可以充分利用不稳定的风力、光伏电力,还能够作为电能储存和调节手段。电化学体系均包含氧化/还原两个部分,需要利用离子膜材料隔开,避免氧化剂和还原剂直接反应。与此同时,电化学系统内部需要通过离子导通内电路,才能实现连续的氧化还原反应。新兴能源领域的需求使得膜分离材料,突破传统的“分离介质”概念,成为能源材料的重要组成部分。本文针对电化学能源转化过程的需要,阐述近年发展的高稳定性离子膜制备技术与方法,重点分析氢氧燃料电池膜,以及电解水制氢的离子膜最新进展。
 In the development of clean and efficient renewable energy, large-scale electrochemical energy conversion processes become significantly important. Electrochemical energy conversion equipment, including fuel cells, flow batteries, water electrolyzer of production hydrogen, and electrochemical reduction of carbon dioxide, can not only make full use of the electricity from intermittent wind and photovoltaic power, but also can be used as a means of electrical energy storage and regulation. All of the electrochemical system contains two parts of oxidation and reduction, which need to be separated by ion conduction membranes to avoid direct reaction in redox process. At the same time, the internal circuit of the electrochemical devices needs to be conducted with ions to keep continuous redox reactions. The demand in the emerging energy sector makes membrane break through the traditional concept of "separation media", and become an important part of energy materials. In response to the needs of the electrochemical energy conversion process, this paper reviews the status of preparation art developed in recent years to prepare the stability ion conduction membranes, focusing on the progress upon the membranes of hydrogen-oxygen fuel cell and the latest developments of membranes in water electrolyzer to produce hydrogen.
万磊(1996-),男,湖北孝感人,博士生,研究方向为离子分离膜。

参考文献:
 [1] WANG J, ZHANG H, YANG X, et al. Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity [J]. Adv Funct Mater, 2011, 21(5): 971-8.
[2] WANG J, YUE X, ZHANG Z, et al. Enhancement of Proton Conduction at Low Humidity by Incorporating Imidazole Microcapsules into Polymer Electrolyte Membranes [J]. Adv Funct Mater, 2012, 22(21): 4539-46.
[3] WANG J, ZHANG Z, YUE X, et al. Independent control of water retention and acid–base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity [J]. J Mater Chem A, 2013, 1(6): 2267-77.
[4] WU H, SHEN X, CAO Y, et al. Composite proton conductive membranes composed of sulfonated poly(ether ether ketone) and phosphotungstic acid-loaded imidazole microcapsules as acid reservoirs [J]. J Membr Sci, 2014, 451: 74-84.
[5] NIE L, DONG H, HAN X, et al. Enhanced proton conductivity under low humidity of sulfonated poly(ether ether ketone) composite membrane enabled by multifunctional phosphonic acid polymeric submicrocapsules [J]. J Power Sources, 2013, 240: 258-66.
[6] HE G, NIE L, HAN X, et al. Constructing facile proton-conduction pathway within sulfonated poly(ether ether ketone) membrane by incorporating poly(phosphonic acid)/silica nanotubes [J]. J Power Sources, 2014, 259: 203-12.
[7] ZHANG B, CAO Y, JIANG S, et al. Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity [J]. J Membr Sci, 2016, 518: 243-53.
[8] ZHAO Y, YANG H, WU H, et al. Enhanced proton conductivity of hybrid membranes by incorporating phosphorylated hollow mesoporous silica submicrospheres [J]. J Membr Sci, 2014, 469: 418-27.
[9] LI Z, HE G, ZHAO Y, et al. Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks [J]. J Power Sources, 2014, 262: 372-9.
[10] HE G, CHANG C, XU M, et al. Tunable Nanochannels along Graphene Oxide/Polymer Core–Shell Nanosheets to Enhance Proton Conductivity [J]. Adv Funct Mater, 2015, 25(48): 7502-11.
[11] HE G, XU M, ZHAO J, et al. Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels [J]. Adv Mater, 2017, 29(28): 1605898.
[12] YANG P, WU H, KHAN N A, et al. Intrinsic proton conductive deoxyribonucleic acid (DNA) intercalated graphene oxide membrane for high-efficiency proton conduction [J]. J Membr Sci, 2020, 606: 118136.
[13] MAO X, XU M, WU H, et al. Supramolecular Calix[n]arenes-Intercalated Graphene Oxide Membranes for Efficient Proton Conduction [J]. ACS Appl Mater Interfaces, 2019, 11(45): 42250-60.
[14] SHI B, WU H, SHEN J, et al. Control of Edge/in-Plane Interactions toward Robust, Highly Proton Conductive Graphene Oxide Membranes [J]. ACS Nano, 2019, 13(9): 10366-75.
[15] YIN Y, LI Z, YANG X, et al. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework [J]. J Power Sources, 2016, 332: 265-73.
[16] LI Y, WU H, YIN Y, et al. Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity [J]. J Membr Sci, 2018, 568: 1-9.
[17] CAO L, WU H, CAO Y, et al. Weakly Humidity-Dependent Proton-Conducting COF Membranes [J]. Adv Mater, 2020, 32(52): 2005565.
[18] FAN C, WU H, GUAN J, et al. Scalable fabrication of crystalline COF membrane from amorphous polymeric membrane [J]. Angew Chem Int Ed, n/a(n/a).
[19] WANG J, XIAO L, ZHAO Y, et al. A facile surface modification of Nafion membrane by the formation of self-polymerized dopamine nano-layer to enhance the methanol barrier property [J]. J Power Sources, 2009, 192(2): 336-43.
[20] HE G, HE X, WANG X, et al. A highly proton-conducting, methanol-blocking Nafion composite membrane enabled by surface-coating crosslinked sulfonated graphene oxide [J]. Chem Commun, 2016, 52(10): 2173-6.
[21] WANG J, ZHAO Y, HOU W, et al. Simultaneously enhanced methanol barrier and proton conductive properties of phosphorylated titanate nanotubes embedded nanocomposite membranes [J]. J Power Sources, 2010, 195(4): 1015-23.
[22] WU H, HOU W, WANG J, et al. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix [J]. J Power Sources, 2010, 195(13): 4104-13.
[23] YIN Y, XU T, SHEN X, et al. Fabrication of chitosan/zwitterion functionalized titania–silica hybrid membranes with improved proton conductivity [J]. J Membr Sci, 2014, 469: 355-63.
[24] XU T, HOU W, SHEN X, et al. Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability [J]. J Power Sources, 2011, 196(11): 4934-42.
[25] WU H, SHEN X, XU T, et al. Sulfonated poly(ether ether ketone)/amino-acid functionalized titania hybrid proton conductive membranes [J]. J Power Sources, 2012, 213: 83-92. 
[26]YOU Wei, NOONAN Kevin J. T., COATES Geoffrey W. Alkaline-stable anion exchange membranes: A review of synthetic approaches[J]. Progress in Polymer Science, 2020, 100: 101177. 
[27] 徐子昂 万磊, 刘凯, 王保国. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906. 
[28] LU Wangting, YANG Zhenzhen, HUANG He, et al. Piperidinium-Functionalized Poly(Vinylbenzyl Chloride) Cross-linked by Polybenzimidazole as an Anion Exchange Membrane with a Continuous Ionic Transport Pathway[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21077-21087.
[29] LI Dongguo, PARK Eun Joo, ZHU Wenlei, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5): 378-385. 
[30] CHA Min Suc, PARK Ji Eun, KIM Sungjun, et al. Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices[J]. Energy & Environmental Science, 2020, 13(10): 3633-3645.
[31] WAN Lei, XU Ziang, WANG Baoguo. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis[J]. Chemical Engineering Journal, 2021, 426: 131340. 
[32] LEI Qing, WANG Baoguo, WANG Peican, et al. Hydrogen generation with acid/alkaline amphoteric water electrolysis[J]. Journal of Energy Chemistry, 2019, 38: 162-169. 
[33] WAN Lei, XU Ziang, WANG Peican, et al. H2SO4-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis[J]. Journal of Membrane Science, 2021, 618: 118642. 
[34] OENER Sebastian Z., FOSTER Marc J., BOETTCHER Shannon W. Accelerating water dissociation in bipolar membranes and for electrocatalysis[J]. Science, 2020, 369(6507): 1099. 
[35] MAYERHöFER Britta, MCLAUGHLIN David, BöHM Thomas, et al. Bipolar Membrane Electrode Assemblies for Water Electrolysis[J]. ACS Applied Energy Materials, 2020, 3(10): 9635-9644.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号