椭圆中空纤维膜渗透汽化的传质强化数值模拟
作者:胡碧涵,杨栋,王洋,曹清源,袁雨辰,张新,庄黎伟,许振良
单位: 化学工程联合国家重点实验室,化学工程研究所膜科学与工程研发中心,华东理工大学化工学院,上海 200237
关键词: 计算流体力学;浓差极化;中空纤维膜;渗透汽化脱水
出版年,卷(期):页码: 2022,42(1):65-71

摘要:
 本文建立了一个三维中空纤维膜渗透汽化传质模型,研究了膜管截面形状对渗透汽化过程传质的影响。该模型与经典理论Leveque传质关联式具有良好的一致性,且在同样的操作条件下,该模型与椭圆中空纤维膜接触器有一致的传质强化效果。相比传统圆形截面中空纤维膜,椭圆形截面能显著降低边界层传质阻力。在膜阻力远小于边界层阻力的情况下,椭圆膜半轴比由1增大到3,椭圆形截面膜的渗透通量可提升0.6%-28%。可见,椭圆形截面中空纤维膜在渗透汽化过程中具有良好的传质强化效果。
 A three-dimensional hollow fiber membrane pervaporation mass transfer model is established and the influence of the cross-sectional shape of the membrane tube on the mass transfer of the pervaporation process is studied. This model has good consistency with Leveque mass transfer correlation equations, and under the same operating conditions, this model has the same mass transfer enhancement effect as the elliptical hollow fiber membrane contactor. The research results show that: compared with the traditional circular cross-section hollow fiber membrane, the elliptical cross-section can reduce the mass transfer resistance of the boundary layer in the membrane tube significantly. When the membrane resistance is much smaller than the boundary layer resistance, the permeation flux of the elliptical cross-section membrane can be increased by 0.6%-28% as the axis ratio of the elliptical membrane is increased from 1 to 3. Therefore, the hollow fiber membrane with elliptical cross-section has a good mass transfer enhancement effect during the pervaporation process.
胡碧涵(1995-12),女,江苏苏州,硕士研究生,传递过程模拟

参考文献:
 [1] ONG Y K, SHI G M, LE N L, et al. Recent membrane development for pervaporation processes[J]. Progress in Polymer Science, 2016, 57: 1–31.
[2] HAN G, CHENG Z L, CHUNG T-S. Thin-film composite (TFC) hollow fiber membrane with double-polyamide active layers for internal concentration polarization and fouling mitigation in osmotic processes[J]. Journal of Membrane Science, 2017, 523: 497–504.
[3] FENG X, HUANG R Y M. Liquid Separation by Membrane Pervaporation: A Review[J]. Industrial & Engineering Chemistry Research, 1997, 36(4): 1048–1066.
[4] REZAKAZEMI M, SHAHVERDI M, SHIRAZIAN S, et al. CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation[J]. Chemical Engineering Journal, 2011, 168(1): 60–67.
[5] MOULIK S, NAZIA S, VANI B, et al. Pervaporation separation of acetic acid/water mixtures through sodium alginate/polyaniline polyion complex membrane[J]. Separation and Purification Technology, 2016, 170: 30–39.
[6] LIM S Y, LIANG Y Y, FIMBRES WEIHS G A, et al. A CFD study on the effect of membrane permeance on permeate flux enhancement generated by unsteady slip velocity[J]. Journal of Membrane Science, 2018, 556: 138–145.
[7] LIU S, PENG M, VANE L. CFD simulation of effect of baffle on mass transfer in a slit-type pervaporation module[J]. Journal of Membrane Science, 2005, 265(1–2): 124–136.
[8] AHMADI N, DADVAND A, MIRZAEI I, et al. Modeling of polymer electrolyte membrane fuel cell with circular and elliptical cross-section gas channels: A novel procedure[J]. International Journal of Energy Research, 2018, 42(8): 2805–2822.
[9] MOAWED M, IBRAHIM E. Free convection heat transfer inside vertical and inclined elliptic tubes with different axis ratio and different inclination and orientation angles[J]. Energy Conversion and Management, 2008, 49(4): 587–595.
[10] HUANG S-M, YANG M. Heat and mass transfer enhancement in a cross-flow elliptical hollow fiber membrane contactor used for liquid desiccant air dehumidification[J]. Journal of Membrane Science, 2014, 449: 184–192.
[11] HENDERSON-SELLERS B. A new formula for latent heat of vaporization of water as a function of temperature[J]. Quarterly Journal of the Royal Meteorological Society, 1984, 110(466): 1186-1190.
[12] ZHUANG L, GUO H, DAI G, et al. Effect of the inlet manifold on the performance of a hollow fiber membrane module-A CFD study[J]. Journal of Membrane Science, 2017, 526: 73–93.
[13] PENG M, VANE L M, LIU S X. Numerical Simulation of Concentration Polarization in a Pervaporation Module[J]. Separation Science and Technology, 2005, 39(6): 1239–1257.
[14] YANG M-C, CUSSLER E L. Designing hollow-fiber contactors[J]. AIChE Journal, 1986, 32(11): 1910–1916.
[15] WICKRAMASINGHE S R, SEMMENS M J, CUSSLER E L. Mass transfer in various hollow fiber geometries[J]. Journal of Membrane Science, 1992, 69(3): 235–250.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号