BTDA/6FDA-DAM/2,6DAT嵌段聚酰亚胺膜制备及其气体分离性能研究
作者:郭欣,衣华磊,段翠佳,郝蕴,李恩尚,骆鑫雨
单位: 1中海油研究总院有限责任公司,北京市 100028;2中海油天津化工研究设计院有限公司,天津市,300130;3天津大学,天津市,300071
关键词: 嵌段聚酰亚胺;天然气;气体分离膜
出版年,卷(期):页码: 2022,42(1):80-87

摘要:
 以6FDA、BTDA、DAM和2,6DAT为单体,合成不同嵌段结构或嵌段长度的聚酰亚胺,通过FT-IR、XRD、DSC、万能试验机和气体渗透仪研究不同嵌段聚酰亚胺膜的化学结构、链段堆积结构、热性能、机械强度和气体分离性能。DSC结果显示,嵌段聚酰亚胺玻璃化转变温度略低于无规共聚聚酰亚胺。气体渗透测试结果显示,不同嵌段结构聚酰亚胺(BTDA-DAM)/(6FDA-2,6DAT)-x和(BTDA-2,6DAT)/(6FDA-DAM)-x的气体渗透系数随嵌段长度增加呈相反变化趋势。嵌段长度5或10时,嵌段聚酰亚胺膜气体分离性能最优:(BTDA-DAM)/(6FDA-2,6DAT)-5较无规共聚聚酰亚胺膜CO2渗透系数提高了52%,同时CO2/CH4分离系数基本不变甚至略有增加。
  Block-polyimide with different block structure or block length was synthesized using 6FDA, BTDA, DAM and 2,6DAT. Chemical structure, chain stacking structure, thermal property, mechanical strength and gas separation performance of block-polyimide were studied by FT-IR, XRD, DSC, mechanical strength testing machine and gas permeator. DSC showed that glass transition temperature of block-polyimide was slightly lower than that of random copolyimide. The gas permeability test results showed that the gas permeability of (BTDA-DAM)/ (6FDA-2,6DAT)-x and (BTDA-2,6DAT)/(6FDA-DAM)-x with different block structure showed an opposite trend with the increase of block length. When block length is 5 or 10, the gas separation performance of block-polyimide membranes is optimal: CO2 permeability of (BTDA-DAM)/(6FDA-2,6DAT)-5 is 52.5% higher than that of random copolymer polyimide membrane, and CO2/CH4 selectivity is almost unchanged.
郭欣(1986-),男,硕士,高工,海洋石油工艺设计

参考文献:
 [1] Zhang N, Pan Z, Zhang Z. CO2 Capture from Coalbed Methane Using Membranes: A Review [J]. Environmental Chemistry Letters, 2020, 18(1): 79-96.
[2] Adewole J K, Ahmad A L, Ismail S. Current Challenges in Membrane Separation of CO2 from Natural Gas: A Review [J]. International Journal of Greenhouse Gas Control, 2013, 17: 46-65.
[3] 谭喆,周勇,高从堦. 优先渗透CO2的膜材料研究进展 [J]. 膜科学与技术, 2014, 34(1): 121-127.
[4] Wang S, Li X, Wu H. Advances in High Permeability Polymer-Based Membrane Materials for CO2 Separations [J]. Energy & Environmental Science, 2016, 9(6): 1863-1890.
[5] Sanaeepur H, Amooghin A E, Bandehali S. Polyimides in Membrane Gas Separation: Monomer's Molecular Design and Structural Engineering [J]. Progress in Polymer Science, 2019, 91: 80-125.
[6] 祁文博,王同华,李琳. BDAF-PMDA型聚酰亚胺炭膜的制备及其气体分离性能的研究 [J]. 膜科学与技术, 2012, 32(3): 6-10.
[7] Hayek A, Yahaya G O, Alsamah A. Fluorinated Copolyimide Membranes for Sour Mixed-Gas Upgrading [J]. Journal of Applied Polymer Science, 2020, 137(5).
[8] 王汉利,阮雪华,代岩. 含氟聚酰亚胺的气体渗透性研究 [J]. 2018, 38(06): 34-40.
[9] Zhu T, Yang X, Zhang Y. Random and Block Copolymer Membranes Based on Flexible Etheric-Aliphatic Soft Segments Designed for CO2/CH4 Separation [J]. Journal of Natural Gas Science and Engineering, 2018, 54: 92-101.
[10] 黄旭,邵路,孟令辉. 聚酰亚胺基气体分离膜的改性方法及其最新进展 [J]. 膜科学与技术, 2009, 29(1): 101-108.
[11] Favvas E P, Katsaros F K, Papageorgiou S K. A Review of the Latest Development of Polyimide Based Membranes for CO2 Separations[J]. Reactive & Functional Polymers, 2017, 120: 104-130.
[12] Querelle S E, Chen L, Hillmyer M A. Block Copolymer Derived Membranes for Sustained Carbon Dioxide-Methane Separations [J]. Industrial & Engineering Chemistry Research, 2010, 49(23): 12051-12059.
[13] Zhuang G-L, Wey M-Y, Tseng H-H. Effect of Copolymer Microphase-Separated Structures on the Gas Separation Performance and Aging Properties of Sbc-Derived Membranes [J]. Journal of Membrane Science, 2017, 529: 63-71.
[14] Hossain I, Nam S Y, Rizzuto C. PIM-Polyimide Multiblock Copolymer-Based Membranes with Enhanced CO2 Separation Performances [J]. Journal of Membrane Science, 2019, 574: 270-281.
[15] Kashimura Y, Aoyama S, Kawakami H. Gas Transport Properties of Asymmetric Block Copolyimide Membranes [J]. Polymer Journal, 2009, 41(11): 961-967.
[16] Heck R, Qahtani M S, Yahaya G O. Block Copolyimide Membranes for Pure- and Mixed-Gas Separation [J]. Separation and Purification Technology, 2017, 173: 183-192.
[17] Qiu W, Liu L, Koros W J. Effect of Block Versus Random Copolyimide Structure on Hollow Fiber Membrane Spinnability [J]. Journal of Membrane Science, 2017, 529: 150-158.
[18] Zhang C, Cao B, Coleman M R. Gas Transport Properties in (6FDA-RTIL)-(6FDA-MDA) Block Copolyimides [J]. Journal of Applied Polymer Science, 2016, 133(9).
[19] Ito T, Shiota R, Taniguchi N. Gas-Separation and Physical Properties of ABA Triblock Copolymers Synthesized from Polyimide and Hydrophilic Adamantane Derivatives [J]. Polymer, 2020, 202. 
[20] Alghannam A A, Yahaya G O, Hayek A. High Pressure Pure- and Mixed Sour Gas Transport Properties of Cardo-Type Block Co-Polyimide Membranes [J]. Journal of Membrane Science, 2018, 553: 32-42.
[21] Luo S, Stevens K A, Park J S. Highly CO2-Selective Gas Separation Membranes Based on Segmented Copolymers of Poly(Ethylene Oxide) Reinforced with Pentiptycene-Containing Polyimide Hard Segments [J]. Acs Applied Materials & Interfaces, 2016, 8(3): 2306-2317.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号