芳香聚酰胺材料在膜分离领域应用研究进展
作者:魏恋璎,陈明星,张威,肖长发
单位: 1. 河北科技大学纺织服装学院,河北省纺织服装技术创新中心,河北 石家庄 050018; 2. 河北省柔性功能材料重点实验室,河北 石家庄 050018;3. 纤维材料研究中心,上海工程技术大学,上海 201620
关键词: 芳香聚酰胺;分离膜;纳米纤维膜;纳滤膜;电池隔膜
出版年,卷(期):页码: 2022,42(1):155-169

摘要:
 芳香聚酰胺材料在高性能纤维领域应用广泛,其分子结构中大量的苯环和酰胺键赋予了芳香聚酰胺材料优异的耐热性能和力学性能。常用芳香聚酰胺材料主要有聚间苯二甲酰间苯二胺(PMIA)、聚对苯二甲酰对苯二胺(PPTA)两种,它们具有耐热、亲水和耐化学性好等优点。随着分离膜应用领域的拓展,对分离膜性能的要求日益提高。制膜技术的发展使得制膜材料的种类也得到了扩展,具有优异性能的芳香聚酰胺材料逐渐进入科研人员视线,其优异的性能使其在分离膜材料领域逐渐得到广泛应用。本文归纳了芳香聚酰胺材料在膜分离领域的应用研究进展,分别对PMIA分离膜和PPTA分离膜的制备与改性,及其在超滤膜、反渗透膜、正渗透膜、纳滤膜、电池隔膜及油水分离膜等领域的应用进行介绍,分析了芳香聚酰胺分离膜在制备及应用过程中存在的问题并对其前景进行了展望,以期为制备高性能芳香聚酰胺分离膜提供参考。
 Aromatic polyamide materials are widely used in the field of high performance fiber. The benzene ring and amide bond in their molecular structure give aromatic polyamide excellent heat resistance and mechanical properties. The poly (m-phenylene isophthalamide) (PMIA) and poly (p-phenylene terephthamide) (PPTA) are the most commonly used aromatic polyamide materials which has good heat-resistance, chemical-resistance and hydrophilicity. With the development of the application of membrane separation, higher requirements are put forward for the performance of separation membrane. Hence, aromatic polyamide materials with excellent properties attracted more and more attentions. The high performance of aromatic polyamide made it gradually used in the field of membrane separation. In this paper, the preparation and modification method of aromatic polyamide membrane were reviewed, and the application of aromatic polyamide in the field of ultrafiltration membrane, reverse osmosis membrane, forward osmosis membrane, nanofiltration membrane, battery separator and oil/water separation membrane were also classified and summarized. Finally, the existing problems and future development trends of aromatic polyamide membrane were discussed. This paper can offer a relatively important reference for the preparation of aromatic polyamide membrane.
魏恋璎(1996-),女,河北邢台人,硕士,主要从事间位芳香聚酰胺分离膜的制备及性能调控等方面研究。

参考文献:
 [1] Roenbeck M R, Cline J, Wu V, et al. Structure–property relationships of aramid fibers via X-ray scattering and atomic force microscopy [J]. Journal of Materials Science, 2019, 54, (8), 6668-6683.
[2] 贾欣桦, 曲荣君, 孙昌梅等. 低聚对位芳纶化学修饰多壁碳纳米管的制备及性能 [J]. 高分子学报, 2018, (07), 878-885.
[3] 张美云 罗晶晶, 杨斌等. 芳纶纳米纤维的制备及应用研究进展 [J]. 材料导报, 2020, 34, (5), 5158-5166.
[4] Zheng H, Zhang J, Du B, et al. Effect of treatment pressure on structures and properties of PMIA fiber in supercritical carbon dioxide fluid [J]. Journal of Applied Polymer Science, 2015, 132, (14).
[5] 李田田, 刘富. 基于相转化全过程的聚合物微孔膜功能化研究进展 [J]. 功能高分子学报, 2020, 33, (03), 210-225.
[6] 林亚凯, 汪林, 唐元晖等. 中空纤维纳滤膜制备方法的研究进展 [J]. 膜科学与技术, 2020, 40, (03), 128-135.
[7] Yu L, Yang F, Xiang M. Phase separation in a PSf/DMF/water system: a proposed mechanism for macrovoid formation [J]. RSC Advances, 2014, 4, (80), 42391-42402.
[8] Wang C, Xiao C, Chen M, et al. Unique performance of poly(p-phenylene terephthamide) hollow fiber membranes [J]. Journal of Materials Science, 2016, 51, (3), 1522-1531.
[9] Sun C-C, Song Y-Z, Yan Y, et al. Integrating flexible PMIA separator and electrode for dealing with multi-aspect issues in Li–S batteries [J]. Electrochimica Acta, 2020, 359, 136987.
[10] Zhu L, Yu H, Zhang H, et al. Mixed matrix membranes containing MIL-53(Al) for potential application in organic solvent nanofiltration [J]. RSC Advances, 2015, 5, (89), 73068-73076.
[11] Ding Y, Hou H, Zhao Y, et al. Electrospun polyimide nanofibers and their applications [J]. Progress in Polymer Science, 2016, 61, 67-103.
[12] Kang W, Deng N, Ma X, et al. A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenyleneisophthalamide for lithium-ion battery [J]. Electrochimica Acta, 2016, 216, 276-286.
[13] Lin J, Ding B, Yang J, et al. Mechanical robust and thermal tolerant nanofibrous membrane for nanoparticles removal from aqueous solution [J]. Materials Letters, 2012, 69, 82-85.
[14] Yang M, Cao K, Sui L, et al. Dispersions of Aramid Nanofibers: A New Nanoscale Building Block [J]. ACS Nano, 2011, 5, (9), 6945-6954.
[15] Zhao Y, Mai Z, Shen P, et al. Nanofiber Based Organic Solvent Anion Exchange Membranes for Selective Separation of Monovalent anions [J]. ACS Applied Materials & Interfaces, 2020, 12, (6), 7539-7547.
[16] Li Y, Wong E, Volodine A, et al. Nanofibrous hydrogel composite membranes with ultrafast transport performance for molecular separation in organic solvents [J]. Journal of Materials Chemistry A, 2019, 7, (33), 19269-19279.
[17] Yuan S, Swartenbroekx J, Li Y, et al. Facile synthesis of Kevlar nanofibrous membranes via regeneration of hydrogen bonds for organic solvent nanofiltration [J]. Journal of Membrane Science, 2019, 573, 612-620.
[18] Zhang Z, Yang S, Zhang P, et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators [J]. Nature Communications, 2019, 10, (1), 2920.
[19] Li H, Shi W, Zhang Y, et al. Preparation and characterization of compatible PVDF/PPTA blends by in situ polymerization for separation membrane materials [J]. Journal of Polymer Research, 2015, 22, (2), 8.
[20] Li H, Shi W, Zhang Y, et al. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate [J]. Applied Surface Science, 2015, 346, 134-146.
[21] Li H, Shi W, Mei S, et al. The Anti-compaction Behavior of Aramid Fiber Based Polyvinylidene Fluoride Composite Separation Membranes [J]. Fibers and Polymers, 2019, 20, (2), 440-449.
[22] Shi W, Zeng X, Li H, et al. Removal of dyes by poly(p-phenylene terephthamide)/polyvinylidene fluoride hollow fiber in-situ blend membranes [J]. Journal of Applied Polymer Science, 2020, 137, (15), 48569.
[23] Shi Q, Ni L, Zhang Y, et al. Poly(p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane [J]. Journal of Materials Chemistry A, 2017, 5, (26), 13610-13624.
[24] Xu S-J, Shen Q, Chen G-E, et al. Novel β-CD@ZIF-8 Nanoparticles-Doped Poly(m-phenylene isophthalamide) (PMIA) Thin-Film Nanocomposite (TFN) Membrane for Organic Solvent Nanofiltration (OSN) [J]. ACS Omega, 2018, 3, (9), 11770-11787.
[25] Lian X, Xie J, Shi Q, et al. Feasible Preparation of a Thin-Film Composite Nanofiltration (TFC NF) Membrane with Enhanced Skin–Substrate Adhesion and Compaction Resistance: In Situ Construction of Rigid–Flexible Polymer Composited Microspheres (CPs) in the Casting Solution [J]. Macromolecular Materials and Engineering, 2020, 305, (3), 1900530.
[26] Xu P, Wang W, Qian X, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio [J]. Desalination, 2019, 449, 57-68.
[27] Lin C-E, Fang L-F, Du S-Y, et al. A novel positively charged nanofiltration membrane formed via simultaneous cross-linking/quaternization of poly(m-phenylene isophthalamide)/polyethyleneimine blend membrane [J]. Separation and Purification Technology, 2019, 212, 101-109.
[28] Zhao C, Yang B, Han J, et al. Preparation of carboxylic multiwalled-carbon-nanotube–modified poly(m-phenylene isophthalamide) hollow fiber nanofiltration membranes with improved performance and application for dye removal [J]. Applied Surface Science, 2018, 453, 502-512.
[29] Li Y, Yuan S, Zhou C, et al. A high flux organic solvent nanofiltration membrane from Kevlar aramid nanofibers with in situ incorporation of microspheres [J]. Journal of Materials Chemistry A, 2018, 6, (45), 22987-22997.
[30] Hua D, Japip S, Wang K Y, et al. Green Design of Poly(m-Phenylene Isophthalamide)-Based Thin-Film Composite Membranes for Organic Solvent Nanofiltration and Concentrating Lecithin in Hexane [J]. ACS Sustainable Chemistry & Engineering, 2018, 6, (8), 10696-10705.
[31] Yan W, Liu L, Dong C, et al. Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance [J]. Desalination, 2021, 498, 114639.
[32] Pan F, Qiao L, Yuan B, et al. Polydopamine coated poly(m-phenylene isophthalamid) membrane as heat-tolerant separator for lithium-ion batteries [J]. Ionics, 2020, 26, (11), 5471-5480.
[33] Shao F, Dong L, Dong H, et al. Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance [J]. Journal of Membrane Science, 2017, 525, 9-17.
[34] 王炎锋, 吕振华, 姜鹏等. 聚酰胺复合膜表面高渗透性抗污染涂层的构建 [J]. 膜科学与技术, 2020, 40, (01), 31-36+52.
[35] Lin C-E, Wang J, Zhou M-Y, et al. Poly(m-phenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes [J]. Journal of Membrane Science, 2016, 518, 72-78.
[36] Sun Z, Chen H, Ren X, et al. Preparation and application of zinc oxide/poly(m-phenylene isophthalamide) hybrid ultrafiltration membranes [J]. Journal of Applied Polymer Science, 2019, 136, (22), 47583.
[37] Balakrishnan J, Pramila J. Elimination of toxic metal ion by means of poly m-phenylene (isophthalamide) ultra filtration membranes [J]. Materials Today: Proceedings, 2020, 33, 2858-2862.
[38] 陈明星, 肖长发, 王纯等. 聚间苯二甲酰间苯二胺中空纤维膜研究 [J]. 高分子学报, 2016, (04), 428-435.
[39] Chen Z, Du X-a, Liu Y, et al. A high-efficiency ultrafiltration nanofibrous membrane with remarkable antifouling and antibacterial ability [J]. Journal of Materials Chemistry A, 2018, 6, (31), 15191-15199.
[40] Miao L, Wu Y, Hu J, et al. Hierarchical aramid nanofibrous membranes from a nanofiber-based solvent-induced phase inversion process [J]. Journal of Membrane Science, 2019, 578, 16-26.
[41] Lian X, Liu W, Xie J, et al. Enhancing the permeability of reverse osmosis membrane by embedding the star-like rigid supports in the substrate [J]. Journal of Applied Polymer Science, 2020, 137, (47), 49557.
[42] Shi M, Yan W, Dong C, et al. Solvent activation before heat-treatment for improving reverse osmosis membrane performance [J]. Journal of Membrane Science, 2020, 595, 117565.
[43] Vatanpour V, Safarpour M, Khataee A, et al. A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes [J]. Separation and Purification Technology, 2017, 184, 135-143.
[44] Miao L, Jiang T, Lin S, et al. Asymmetric forward osmosis membranes from p-aramid nanofibers [J]. Materials & Design, 2020, 191, 108591.
[45] Xu Z, Li P, Li N, et al. Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability [J]. Journal of Colloid and Interface Science, 2021, 589, 486-499.
[46] Yu F, Shi H, Shi J, et al. High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer [J]. Journal of Membrane Science, 2020, 616, 118611.
[47] Ren X, Zhao C, Du S, et al. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal [J]. Journal of Environmental Sciences, 2010, 22, (9), 1335-1341.
[48] Huang J, Zhang K. The high flux poly (m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination [J]. Desalination, 2011, 282, 19-26.
[49] Yang M, Zhao C, Zhang S, et al. Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property [J]. Applied Surface Science, 2017, 394, 149-159.
[50] Wang T, Zhao C, Li P, et al. Effect of non-solvent additives on the morphology and separation performance of poly(m-phenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane [J]. Desalination, 2015, 365, 293-307.
[51] Chen M, Xiao C, Wang C, et al. Preparation and characterization of a novel thermally stable thin film composite nanofiltration membrane with poly (m-phenyleneisophthalamide) (PMIA) substrate [J]. Journal of Membrane Science, 2018, 550, 36-44.
[52] Zhang K, Yang K, Chen Y, et al. Ionic and pH responsive thin film composite hollow fiber nanofiltration membrane for molecular separation [J]. Desalination, 2020, 496, 114709.
[53] Li Y, Wong E, Mai Z, et al. Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination [J]. Journal of Membrane Science, 2019, 592, 117396.
[54] Wang T, He X, Li Y, et al. Novel poly(piperazine-amide) (PA) nanofiltration membrane based poly(m-phenylene isophthalamide) (PMIA) hollow fiber substrate for treatment of dye solutions [J]. Chemical Engineering Journal, 2018, 351, 1013-1026.
[55] Chen L, Li W, Wang Y, et al. Polyimide as anode electrode material for rechargeable sodium batteries [J]. RSC Advances, 2014, 4, (48), 25369-25373.
[56] 杨蕊, 秦振平, 李明晔等. 聚电解质-TiO2改性PVDF多孔膜及其电化学性能 [J]. 膜科学与技术, 2020, 40, (06), 51-57.
[57] 龚文正, 谷俊峰, 阮诗伦等. 静电纺丝制备高强度聚偏氟乙烯锂离子电池隔膜 [J]. 高分子材料科学与工程, 2019, 35, (03), 148-155.
[58] Zhang H, Zhang Y, Xu T, et al. Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries [J]. Journal of Power Sources, 2016, 329, 8-16.
[59] Chen Y, Qiu L, Ma X, et al. Electrospun PMIA and PVDF-HFP composite nanofibrous membranes with two different structures for improved lithium-ion battery separators [J]. Solid State Ionics, 2020, 347, 115253.
[60] Wang L, Deng N, Ju J, et al. A novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance [J]. Electrochimica Acta, 2019, 300, 263-273.
[61] Zhai Y, Wang N, Mao X, et al. Sandwich-structured PVDF/PMIA/PVDF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries [J]. Journal of Materials Chemistry A, 2014, 2, (35), 14511-14518.
[62] Li Y, Ma X, Deng N, et al. Electrospun SiO2/PMIA nanofiber membranes with higher ionic conductivity for high temperature resistance lithium-ion batteries [J]. Fibers and Polymers, 2017, 18, (2), 212-220.
[63] Zhao H, Deng N, Yan J, et al. Effect of OctaphenylPolyhedral oligomeric silsesquioxane on the electrospun Poly-m-phenylene isophthalamid separators for lithium-ion batteries with high safety and excellent electrochemical performance [J]. Chemical Engineering Journal, 2019, 356, 11-21.
[64] Zhang X, Li N, Hu Z, et al. Poly(p-phenylene terephthalamide) modified PE separators for lithium ion batteries [J]. Journal of Membrane Science, 2019, 581, 355-361.
[65] Zhu C, Zhang J, Xu J, et al. Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery [J]. Journal of Membrane Science, 2019, 588, 117169.
[66] Padaki M, Surya Murali R, Abdullah M S, et al. Membrane technology enhancement in oil–water separation. A review [J]. Desalination, 2015, 357, 197-207.
[67] 马忠宝. 芳香聚酰胺分离膜的制备与性能研究 [D]; 哈尔滨工业大学, 2017.
[68] Tang X, Si Y, Ge J, et al. In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil–water separation [J]. Nanoscale, 2013, 5, (23), 11657-11664.
[69] Ouyang S, Wang T, Zhong L, et al. Fabrication of hierarchical feather-mimetic polymer nanofibres [J]. Applied Surface Science, 2018, 427, 471-479.
[70] Ouyang S, Wang T, Jia X, et al. Self-indicating and recyclable superhydrophobic membranes for effective oil/water separation in harsh conditions [J]. Materials & Design, 2016, 96, 357-363.
[71] Yang B, Wang L, Zhang M, et al. Timesaving, High-Efficiency Approaches To Fabricate Aramid Nanofibers [J]. ACS Nano, 2019, 13, (7), 7886-7897.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号