正渗透技术应用于污废水处理的研究进展
作者:龙中亮,huu hao ngo,张新波,刘颖,王慧中,温海涛
单位: 1.天津城建大学 基础设施防护和环境绿色生物技术国际联合研究中心, 天津 300384; 2.天津城建大学 天津市水质科学与技术重点实验室, 天津 300384
关键词: 正渗透;影响因素;浓差极化;废水处理
出版年,卷(期):页码: 2022,42(1):192-200

摘要:
 随着我国污废水处理市场和规模进一步扩大,同时膜材料生产成本下降,促进了膜技术在污废水处理领域的迅速发展。不同于传统施加外压的压力驱动膜处理技术,正渗透以其低能耗、低污染和高截留能力的特点引起了广泛关注。本文从正渗透技术原理出发,介绍了膜材料、汲取液种类和浓差极化三个主要影响因素;其次,分析了正渗透技术及组合工艺在废水处理领域的研究与应用现状;最后,基于正渗透技术在废水处理及资源化应用中仍存在的四个问题,对其未来发展方向和前景进行了展望。
 With the further expansion of the sewage treatment market in China, and the decrease of production cost of membrane materials, the rapid development of membrane technology in the wastewater treatment has been promoted. Compared to the traditional pressure-driven membrane treatment technology, forward osmosis has the advantages of low energy consumption, low pollution and high retention capacity. Therefore, it has been widely concerned. Based on the principle of forward osmosis technology, three main influencing factors including membrane material, type of extraction solution and concentration polarization are introduced in this paper. Then, the current researches and applications of forward osmosis technology and the combined process in the wastewater treatment are summarized. Finally, the four problems existing in the application of forward osmosis technology to wastewater treatment and recycling are discussed. Additionally, the development trends of forward osmosis technology in the future are prospected.
龙中亮(1996-),男,湖北荆州人,硕士研究生,研究方向为水污染控制

参考文献:
 [1] Liu Z, An X, Dong C, et al. Modification of thin film composite polyamide membranes with 3D hyperbranched polyglycerol for simultaneous improvement in their filtration performance and antifouling properties[J]. Journal of Materials Chemistry A, 2017, 5(44): 23190–23197.
[2] 任潇, 王策, 李咏梅. 正渗透膜技术的研究与应用进展[J]. 环境污染与防治, 2018, 40(02): 230–235.
[3] 郭豪, 谢朝新, 周宁玉, 等. 改性正向渗透膜研究进展综述[J]. 当代化工, 2017, 46(07): 1466–1469.
[4] 李猛, 姚宇健, 张轩, 等. 薄层复合膜的纳米改性:设计、制备及应用[J]. 化工进展, 2019, 38(01): 365–381.
[5] 刘子文. 正渗透膜的制备及其性能研究[D]. 华南理工大学, 2014.
[6] Faria A F, Liu C, Xie M, et al. Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control[J]. Journal of Membrane Science, 2017, 525: 146–156.
[7] Park M J, Phuntsho S, He T, et al. Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. Journal of Membrane Science, 2015, 493: 496–507.
[8] Wang X, Zhao Y, Li X, et al. Performance evaluation of a microfiltration-osmotic membrane bioreactor (MF-OMBR) during removing silver nanoparticles from simulated wastewater[J]. Chemical Engineering Journal, 2017, 313: 171–178.
[9] Nguyen N C, Nguyen H T, Ho S-T, et al. Exploring high charge of phosphate as new draw solute in a forward osmosis–membrane distillation hybrid system for concentrating high-nutrient sludge[J]. Science of The Total Environment, 2016, 557–558: 44–50.
[10] 凡祖伟, 张如意, 王蕾, 等. 聚偏氟乙烯基复合正渗透膜的制备与表征[J]. 水处理技术, 2018, 44(07): 58-61+73.
[11] 朱卫军, 王新华, 李秀芬, 等. 正渗透膜生物反应器与反渗透耦合系统的运行性能研究[J]. 膜科学与技术, 2018, 38(03): 104–109.
[12] Singh N, Dhiman S, Basu S, et al. Dewatering of sewage for nutrients and water recovery by Forward Osmosis (FO) using divalent draw solution[J]. Journal of Water Process Engineering, 2019, 31: 100853.
[13] Viet N D, Cho J, Yoon Y, et al. Enhancing the removal efficiency of osmotic membrane bioreactors: A comprehensive review of influencing parameters and hybrid configurations[J]. Chemosphere, 2019, 236: 124363.
[14] Hau N T, Chen S-S, Nguyen N C, et al. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge[J]. Journal of Membrane Science, 2014, 455: 305–311.
[15] 戚广贤, 陈顺权, 何国梁, 等. 葡萄糖酸盐用作正向渗透汲取液的应用研究[J]. 广东化工, 2018, 45(12): 90-91+122.
[16] Alejo T, Arruebo M, Carcelen V, et al. Advances in draw solutes for forward osmosis: Hybrid organic-inorganic nanoparticles and conventional solutes[J]. Chemical Engineering Journal, 2017, 309: 738–752.
[17] 王泠沄, 马兰, 栗丽, 等. 正向渗透汲取剂研究进展[J]. 环境科学与技术, 2016(S1 vo 39): 143–149.
[18] 段文松, 李带, 张方芳, 等. 正渗透膜生物反应器运行过程中溶质反渗对微生物群落的影响[J]. 化工学报, 2019, 70(05): 1981–1990.
[19] Nguyen H T, Chen S-S, Nguyen N C, et al. Exploring an innovative surfactant and phosphate-based draw solution for forward osmosis desalination[J]. Journal of Membrane Science, 2015, 489: 212–219.
[20] Chang H-M, Chen S-S, Nguyen N C, et al. Osmosis membrane bioreactor–microfiltration with magnesium-based draw solute for salinity reduction and phosphorus recovery[J]. International Biodeterioration & Biodegradation, 2017, 124: 169–175.
[21] Luján-Facundo M J, Mendoza-Roca J A, Soler-Cabezas J L, et al. Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution[J]. Process Safety and Environmental Protection, 2019, 131: 292–299.
[22] Parveen F, Hankins N. Comparative performance of nanofiltration and forward osmosis membranes in a lab-scale forward osmosis membrane bioreactor[J]. Journal of Water Process Engineering, 2019, 28: 1–9.
[23] Gao Y, Wang Y-N, Li W, et al. Characterization of internal and external concentration polarizations during forward osmosis processes[J]. Desalination, 2014, 338: 65–73.
[24] Mehta G D, Loeb S. Performance of permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures[J]. Journal of Membrane Science, 1978, 4: 335–349.
[25] McCutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. Journal of Membrane Science, 2006, 284(1–2): 237–247.
[26] Ab Hamid N H, Smart S, Wang D K, et al. Economic, energy and carbon footprint assessment of integrated forward osmosis membrane bioreactor (FOMBR) process in urban wastewater treatment[J]. Environmental Science: Water Research & Technology, 2020, 6(1): 153–165.
[27] Lay W C L, Zhang Q, Zhang J, et al. Study of integration of forward osmosis and biological process: Membrane performance under elevated salt environment[J]. Desalination, 2011, 283: 123–130.
[28] Wang X, Chen Y, Yuan B, et al. Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor[J]. Bioresource Technology, 2014, 161: 340–347.
[29] Wang X, Yuan B, Chen Y, et al. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up[J]. Bioresource Technology, 2014, 167: 116–123.
[30] 王新华, 陈瑶, 李秀芬. 基于微滤和正渗透技术的新型膜生物反应器的开发及其运行性能的研究[J]. 2015年中国环境科学学会学术年会论文集(第二卷), 中国广东深圳: 中国环境科学学会(Chinese Society for Environmental Sciences), 2015: 7.
[31] Lu Y, He Z. Mitigation of Salinity Buildup and Recovery of Wasted Salts in a Hybrid Osmotic Membrane Bioreactor–Electrodialysis System[J]. Environmental Science & Technology, 2015, 49(17): 10529–10535.
[32] Yan T, Ye Y, Ma H, et al. A critical review on membrane hybrid system for nutrient recovery from wastewater[J]. Chemical Engineering Journal, 2018, 348: 143–156.
[33] Shahzad M A, Khan S J, Siddique M S. Draw solution recovery using direct contact membrane distillation (DCMD) from osmotic membrane bioreactor (Os-MBR)[J]. Journal of Water Process Engineering, 2019, 30: 100484.
[34] Nguyen N C, Nguyen H T, Chen S-S, et al. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse[J]. Bioresource Technology, 2016, 209: 8–15.
[35] Qiu G, Ting Y-P. Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment[J]. Bioresource Technology, 2014, 170: 221–229.
[36] Qiu G, Zhang S, Srinivasa Raghavan D S, et al. The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery[J]. Water Research, 2016, 105: 370–382.
[37] Ye Y, Ngo H H, Guo W, et al. Nutrient recovery from wastewater: From technology to economy[J]. Bioresource Technology Reports, 2020, 11: 100425.
[38] Vaneeckhaute C, Belia E, Meers E, et al. Nutrient recovery from digested waste: Towards a generic roadmap for setting up an optimal treatment train[J]. Waste Management, 2018, 78: 385–392.
[39] Gao F, Yang Z-H, Li C, et al. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent[J]. Bioresource Technology, 2015, 179: 8–12.
[40] Rajesh Banu J, Preethi, Kavitha S, et al. Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis[J]. Bioresource Technology, 2020, 302: 122822.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号