电催化膜灭活大肠杆菌机制研究
作者:王尹,赵蕾,邓橙,李双戎,程晓,刘红斌,朱孟府
单位: 军事科学院系统工程研究院卫勤保障技术研究所,天津 300161
关键词: 电催化膜;大肠杆菌;灭活;氧化;损伤机制
出版年,卷(期):页码: 2022,42(2):34-39

摘要:
 通过电催化膜对大肠杆菌进行灭活处理,采用电子顺磁共振技术检测电催化过程产生的自由基,采用平板计数、电镜观察、双染法和刃天青还原实验等方法评价大肠杆菌的可培养能力、形态结构、细胞膜通透性和新陈代谢能力,探究电催化膜灭活大肠杆菌的机制。研究结果表明,电催化膜在水处理过程中能够产生对灭活大肠杆菌起重要作用的·OH、1O2等氧化活性物质,能破坏大肠杆菌的结构形态、细菌还原酶和新陈代谢能力,使细菌失去活性而灭活;大肠杆菌灭活效果随着电催化膜电流密度的增加而增加,当电流密度增加到75 mA·cm-2时,大肠杆菌减少了4.1个数量级,具有新陈代谢能力的活细菌百分比下降到了32.4%。
 In this study, an electrocatalytic membrane was used to inactivate E. coli and the mechanism was identified through a series of technical methods. The EPR measurement was used to detect free radicals produced during the electrocatalysis process. The plate counting, electron microscope observation,dual staining,resazurin reduction test and other technical methods were used to determine the cultivability, morphological structure, cell membrane permeability and metabolic capacity of Escherichia coli. These results showed that the electrocatalytic membrane can produce reactive oxygen species such as hydroxyl radicals and singlet oxygen during the treatment process, and can destroy the structure, bacterial reductase and metabolism of E.coli, thus endowing it the ability of inactivating bacteria. The effect of the electrocatalytic membrane for inactivating E. coli increased with the increase of current density. When the current density reached 75 mA·cm-2, the total number of E. coli colonies decreased by 4.1 orders of magnitude, and the percentage of living bacteria with metabolic ability decreased to 32.4%.
王尹(1997-),男,江苏苏州人,硕士生,研究方向为膜分离净化技术,E-mail:1224582874@qq.com

参考文献:
 [1]Pruss-Ustun A, Bartram J, Clasen T ,et al. Burden of disease from inadequate water, sanitation and hygiene in low-and middle-income settings: a retrospective analysis of data from 145 countries[J].Tropical Medicine and International Health, 2014, 19(8):894-905.
[2]Chen L, Wang Z. Effects of chlorination, ultraviolet and ozone disinfection on the biotoxicity of triclosan[J]. Water Science and Technology-Water Supply, 2019,19(4):1175-1180.
[3]姚振兴,王明泉,孙韶华,等.紫外线消毒技术在饮用水处理中的应用[J].城镇供水,2013,2:14-17.
[4]李家成,王佳豪,许锴,等.不同污水消毒工艺对水中细菌病毒去除效果研究进展[J].应用化工,2021,50(4):1094-1099.
[5]Fukuzaki S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes[J]. Biocontrol Science,2006,11(4):147-157
[6]范峻雨,丁昭霞,赵志伟,等.医院废水消毒技术研究进展[J].当代化工,2018,47(9):1932-1935.
[7] 杨海珊.二氧化氯在自来水消毒中的应用[J].科技与创新,2016,16:96-97. 
[8]Dodd M C. Potential impacts of disinfection progresses on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring, 2012, 14(7):1754-1771. 
[9]冯国卿,张璐颖,王诗涵,等.NiCoP/炭电催化膜的制备及性能研究[J].膜科学与技术,2021,41(3):16-23.
[10]张新奇,朱孟府,邓橙,等.PTFE/Bi-SnO2-CNT电催化膜的结构及性能表征[J].膜科学与技术,2019,39(1):34-40.
[11]李乐,王虹,马荣花,等.纳米氧化锰负载钛基电催化膜制备及处理含酚废水性能研究[J].电化学,2018,24(4):309-318.
[12]Vecitis Chad D, Schnoor Mary H, Rahaman Md Saifur, et al. Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation.[J]. Environmental Science & Technology,2011,45(8):3672-3679
[13]李雪燕,邓宇,赵蕾,等.BiSnO2/GO电催化膜的制备及其性能研究[J].膜科学与技术,2020,40(2):53-59.
[4]Wang Pengfei, Deng Yu, Hao Limei, Zhao, et al. Continuous efficient removal and inactivation mechanism of E. coli by bismuth-doped SnO2/C electrocatalytic membrane.[J]. Environmental Science and Pollution Research International, 2019,26(11):11399-11409.
[15]Patermarakis G, Fountoukidis E. Disinfection of water by electrochemical treatment[J]. Pergamon,1990,24(12):1491-1496.
[16]X. Y. Li ,F. Ding, P. S. Y. Lo, et al. Electrochemical Disinfection of Saline Wastewater Effluent[J]. Journal of Environmental Engineering,2002,128(8):697-704.
[17] Li Xiaoxia, Xiong Zhongduo, Ruan Xinchao, et al. Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates[J]. Applied Catalysis A, General,2011,411:24-30.
[18]Hanna P M, Kadiiska M B, Mason R P. Oxygen-derived free radical and active oxygen complex formation from cobalt(II) chelates in vitro.[J]. Chemical Research in Toxicology,1992,5(1):109-115.
[19]Lion Y, Delmelle M, van de Vorst A. New method of detecting singlet oxygen production.[J]. Nature,1976,263(5576):442-443.
[20]Yamakoshi Yoko, Umezawa Naoki, Ryu Akemi, et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2.[J]. Journal of the American Chemical Society,2003,125(42):12803-12809.
[21] Suxia Shen, Tiehua Zhang, Yuan Yuan, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane[J]. Food Control,2015,47:196-202.
[22]Achara Dholvitayakhun, Nathanon Trachoo, Nual-anong, et al. Using scanning and transmission electron microscopy to investigate the antibacterial mechanism of action of the medicinal plant Annona squamosa Linn.[J]. Journal of Herbal Medicine,2016,7:196-202.
[23] Wang Langhong, Zeng Xinan, Wang Mansheng, et al. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin.[J]. Biochimica Et Biophysica Acta,2018,1860(2):481-490.
[24]汪家权,周小霞,许子牧.等离子体活化水灭活金黄色葡萄球菌生物膜[J].环境工程学报,2019,13(7):1766-1772.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号