高渗透选择性纳滤膜的制备及其分盐性能研究
作者:丁华烘,郑彤,葛宇航,刘梅红,俞三传
单位: 1.杭州求是膜技术有限公司,杭州311121;2.浙江理工大学理学院,杭州 310018
关键词: 纳滤膜;界面聚合;渗透选择性;浓盐水脱硝
出版年,卷(期):页码: 2022,42(2):103-109

摘要:
 论文以鞣酸(TA)作为第二水相反应材料,通过TA分子与初生态聚酰胺(PA)复合膜表面残余酰氯的酯化反应,调节分离层的物理化学性质和微观结构,研究二次界面反应对复合纳滤膜性能的影响,制备高渗透选择性纳滤膜。结果表明:TA分子通过酯化反应实现在初生态聚酰胺分离层表面的致密沉积;与PA分离层相比,PA-TA分离层具有更小的孔径、更窄的孔径分布和更强的表面电负性;在最优制备条件下,含PA-TA分离层的复合膜的切割分子量为210 g/mol、纯水渗透率为120 L/(m2·h·MPa);在0.5 MPa下,对0.5 g/L单一溶质水溶液,硫酸钠截留率高达99.3%、氯化钠截留率为60.2%;在3.0 MPa、40 ℃下,过滤含200 g/L NaCl和10.0 g/L Na2SO4的水溶液,在浓缩倍率5倍下,对硫酸钠平均截留率大于98.5%,平均水通量达120 L/(m2·h),而对氯化钠几乎无截留,对氯化钠和硫酸钠混合盐溶液的分盐性能优于120 L/(m2·h)NF270。
 In this study, the physico-chemical and performance properties of nascent polyamide (PA) thin-film composite membrane were tuned via secondary interfacial reaction with tannic acid (TA) as the reactive material. Composite membrane with high perm-selectivity was fabricated through investigating the effects of secondary interfacial reaction on membrane property and separation performance. The results indicated that TA molecules deposited densely onto the surface of the PA-based nascent TFC membrane through esterification reaction between their phenolic hydroxyl groups and the residual acyl chloride groups. Compared with the PA layer, the PA-TA layer showed decreased mean pore size, narrowed pore size distribution and intensified surface negative charge. The desired PA-TA membrane possessed a low molecular weight-cut off of around 210 g/mol, pure water permeability of 120 L/(m2·h·MPa), Na2SO4 rejection of 99.3 % and NaCl rejection of 60.2 % to 0.5 g/l aqueous solution under 0.5 MPa. The PA-TA membrane also exhibited an average Na2SO4 rejection above 98.5%, water flux of about 120 L/(m2·h·MPa), and almost no NaCl rejection to concentrated brine of 200 g/L NaCl and 10.0 g/L Na2SO4under 3.0 MPa, 40.0 ℃ and a concentrating factor of 5. The separation performance of PA-TA membrane to concentrated brine was better than that of commercial membrane NF270.
丁华烘(1974.03),男,浙江杭州人,工程师,从事纳滤膜材料的制备及应用研究

参考文献:
 [1] Schäfer A I, Fane A G, Waite T D. Nanofiltration: Principles and Applications[M]// NewYork: Elsevier, 2005.
[2] Yang Z, Guo H, Tang C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. J Membr Sci, 2019, 590:117297.
[3] Lalia B S, Kochkodan V, Hashaikeh R, et al. A review on membrane fabrication: structure, properties and performance relationship[J]. Desalination, 2013, 326:77-95.
[4] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254.
[5] Ng L Y, Mohammad A W, Ng C Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability[J]. Adv Colloid Interfac, 2013, 197-198: 85-107.
[6] Anand A, Unnikrishnan B, Mao J Y, et al. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling-A review[J]. Desalination, 2018, 429: 119-133.
[7] Xu P, Hong J, Xu Z Z, et al. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency[J]. Sep Purif Technol, 2021, 258:118042.
[8] Guan Y, Fan L, Liu Y N, et al.Incorporating arginine-FeIII complex into polyamide membranes for enhanced water permeance and antifouling performance[J]. J Membr Sci, 2020, 602:117980.
[9] 刘梦欣,肖凡,陈英波,等. 改性氧化石墨烯接枝聚酰胺纳滤膜[J]. 膜科学与技术, 2019, 39(1):72-80.
[10] Tang Y, Zhang L, Shan C, et al. Enhancing the permeance and antifouling properties of thin-film composite nanofiltration membranes modified with hydrophilic capsaicin-mimic moieties[J]. J Membr Sci, 2020, 610:118233.
[11] Noubli A, Akretche D E, Crespo J G, et al. Complementary membrane-based processes for recovery and preconcentration of phosphate from industrial wastewater[J]. Sep Purif Technol, 234: 116123.
[12] Liu M H, Chen Q, Lu K, et al. High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane[J]. Sep Purif Technol, 2017, 173:135-143.
[13] Yan F, Chen H, Lü Y, et al. Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine[J]. J Membr Sci, 2016, 513:108-116.
[14] Lü Z, Hu F, Li H, et al. Composite nanofiltration membrane with asymmetric selective separationlayer for enhanced separation efficiency to anionic dye aqueous solution[J]. J Hazard Mater, 2019, 368: 436-443.
[15] Liu M, Yu S, Zhou Y, et al. Study on the thin-film composite nanofiltration membrane forthe removal of sulfate from concentrated salt aqueous: Preparation and performance[J]. J Membr Sci, 2008, 310: 289-295.
[16] 俞三传, 金可勇, 潘巧明,等. 聚哌嗪酰胺复合纳滤膜研制[J]. 膜科学与技术, 2001,21(1):1-3.
[17] Liu S, Fang F, Wu J, et al. The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles[J]. Desalination, 2015, 375: 121-128.
[18] Tu K L, Chivas A R, Nghiem L D. Effects of chemical preservation on flux and solute rejection by reverse osmosis membranes[J]. J Membr Sci, 2014, 472: 202-209.
[19] Fan L, Ma Y, Su Y, et al. reen coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes[J]. Rsc Adv, 2015, 5(130):107777-107784.
[20] Jayarani M M, Kulkarni S S. Thin-film composite poly(esteramide)-based membranes[J]. Desalination, 2000, 130:17-30.
[21] Misdan N, Ismail A F, Hilal N. Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination[J]. Desalination, 2016, 380:105-111.
[22] Van der Bruggen B, Schaep J, Wilms D, et al. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration[J]. J Membr Sci, 1999, 156:29-41.
[23] Da Silve M K, Ambrosi A, Ramos G M D, et al. Rejuvenating polyamide reverse osmosis membranes by tannic acid Treatment[J]. Sep Purif Technol, 2012, 100:1-8.
[24] Liu Y, Cao J, Ge Y, et al. A combined interfacial polymerization and in-situ sol-gel strategy to construct composite nanofiltration membrane with improved pore size distribution and anti-protein-fouling property[J]. J Membr Sci, 2021, 623:119097.
[25] Lin Y L, Chiang P C, Chang E E. Removal of small trihalomethane precursors from aqueous solution by nanofiltration[J]. J Hazard Mater, 2007, 146: 20-29.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号